Franz-Keldysh effect in strong-field QED

Hidetoshi TAYA

(Fudan University)

Based on [<u>HT</u>, PRD 99, 056006 (2019)] [X.-G. Huang, <u>HT</u>, 1904.08200 (to appear in PRD)]

@LPHYS2019 2019/7/9

Brief summary

What

Spontaneous particle production from the vacuum (Schwinger mech.) by a strong slow E-field superimposed by a weak fast E-field

How

Derive an analytical formula for the production based on the perturbation theory in the Furry picture

Result

A QED analog of Franz-Keldysh effect occurs

✓ a generalization of the dynamically assisted Schwinger mechanism
 ✓ non-trivial assillating pattern in the production

✓ non-trivial oscillating pattern in the production

INTRODUCTION JL THEORY \mathbf{J} RESULTS \mathbf{J} **SUMMARY**

Particles are spontaneously produced from the vacuum in the presence of a strong slow electric field

 ✓ QED analog of electrical breakdown of a semi-conductor in cond-mat (Landau-Zener transition)

Particles are spontaneously produced from the vacuum in the presence of a strong slow electric field

- ✓ QED analog of electrical breakdown of a semi-conductor in cond-mat (Landau-Zener transition)
 - very well formulated for a static *E* = const. (but not well for time-dep. *E*)

 $\frac{d^{3}N_{e}}{dp^{3}} = \frac{V}{(2\pi)^{3}} \exp\left[-\frac{\pi(m^{2}+p_{\perp}^{2})}{eE}\right] \qquad [Schwinger 1951]$

Particles are spontaneously produced from the vacuum in the presence of a strong slow electric field

- ✓ QED analog of electrical breakdown of a semi-conductor in cond-mat (Landau-Zener transition)
 - very well formulated for a static *E* = const. (but not well for time-dep. *E*)

 $\frac{d^3 N_e}{dp^3} = \frac{V}{(2\pi)^3} \exp[-\frac{\pi (m^2 + p_{\perp}^2)}{eE}]$ [Schwinger 1951]

- attainable E-field is too weak compared electron's mass $eE \ll m_e^2$ cf) Guinness world record = HERCULES laser = $eE \sim \sqrt{10^{22} \text{W/cm}^2} \ll \sqrt{10^{28} \text{W/cm}^2} \sim m_e^2$

Particles are spontaneously produced from the vacuum in the presence of a strong slow electric field

- ✓ QED analog of electrical breakdown of a semi-conductor in cond-mat (Landau-Zener transition)
 - very well formulated for a static *E* = const. (but not well for time-dep. *E*)

 $\frac{d^3 N_e}{dp^3} = \frac{V}{(2\pi)^3} \exp[-\frac{\pi (m^2 + p_{\perp}^2)}{eE}]$ [Schwinger 1951]

- attainable E-field is too weak compared electron's mass $eE \ll m_e^2$

cf) Guinness world record = HERCULES laser = $eE \sim \sqrt{10^{22} \text{W/cm}^2} \ll \sqrt{10^{28} \text{W/cm}^2} \sim m_e^2$

Q1: Can we enhance the production rate ?

Q2: What does happen if **E** becomes time-dep. ?

Dynamically assisted Schwinger mechanism

= Schwinger mechanism is dynamically enhanced by superimposing a weak fast time-depending \mathcal{E} -field on top of a strong slow \overline{E} -field

✓ perturbative kick by ε reduces the tunneling length → **big enhancement**

Dynamically assisted Schwinger mechanism

= Schwinger mechanism is dynamically enhanced by superimposing a weak fast time-depending \mathcal{E} -field on top of a strong slow \overline{E} -field

- ✓ perturbative kick by ε reduces the tunneling length → **big enhancement**
 - usually studied w/i semi-classical methods (e.g. worldline, WKB), which are valid if sufficiently adiabatic (i.e., subcrit. $e\overline{E} \ll m^2$, not-so-fast \mathcal{E} s.t. $\omega \ll m$)

Dynamically assisted Schwinger mechanism

= Schwinger mechanism is dynamically enhanced by superimposing a weak fast time-depending \mathcal{E} -field on top of a strong slow \overline{E} -field

- ✓ perturbative kick by ε reduces the tunneling length → big enhancement
 - usually studied w/i semi-classical methods (e.g. worldline, WKB), which are valid if sufficiently adiabatic (i.e., subcrit. $e\overline{E} \ll m^2$, not-so-fast \mathcal{E} s.t. $\omega \ll m$)
 - not observed in exp. yet, but may be observed in the very near future

Dynamically assisted Schwinger mechanism

= Schwinger mechanism is dynamically enhanced by superimposing a weak fast time-depending \mathcal{E} -field on top of a strong slow \overline{E} -field

- ✓ perturbative kick by ε reduces the tunneling length → **big enhancement**
 - usually studied w/i semi-classical methods (e.g. worldline, WKB), which are valid if sufficiently adiabatic (i.e., subcrit. $e\overline{E} \ll m^2$, not-so-fast \mathcal{E} s.t. $\omega \ll m$)
 - not observed in exp. yet, but may be observed in the very near future

Idea: Franz-Keldysh effect in cond-mat

A very similar situation has been studied both theoretically and experimentally more than <u>60 years</u> in cond-mat !!!

- ✓ Apply a strong slow \overline{E} -field and a weak fast time-depending \mathcal{E} -field (or a dynamical photon) onto a semi-conductor
- ✓ Measure photo-absorption rate (instead of e-h pair production number)

Idea: Franz-Keldysh effect in cond-mat

A very similar situation has been studied both theoretically and experimentally more than <u>60 years</u> in cond-mat !!!

- ✓ Apply a strong slow \overline{E} -field and a weak fast time-depending \mathcal{E} -field (or a dynamical photon) onto a semi-conductor
- Measure photo-absorption rate (instead of e-h pair production number)

- ✓ abs. rate is enhanced below the threshold (looks like dyn. ass. Schwinger mech. (?))
- ✓ not only enhancement, but also oscillation above threshold (FK oscillation)

Idea: Franz-Keldysh effect in cond-mat

A very similar situation has been studied both theoretically and experimentally more than <u>60 years</u> in cond-mat !!!

- ✓ Apply a strong slow \overline{E} -field and a weak fast time-depending \mathcal{E} -field (or a dynamical photon) onto a semi-conductor
- Measure photo-absorption rate (instead of e-h pair production number)

✓ abs. rate is enhanced below the threshold (looks like dyn. ass. Schwinger mech. (?))

not only enhancement, but also oscillation above threshold (FK oscillation)

Q: Is this really similar? Does FK effect equally occur for QED?

Aim of this study

Analytically show if FK effect occurs in QED

- \checkmark clarify if dyn. ass. Schwinger mech. can be understood as a part of FK effect
- ✓ clarify if FK oscillation above the threshold $\omega > 2m$ occurs in QED
- ✓ clarify how FK effect modifies the momentum spectrum

Aim of this study

Analytically show if FK effect occurs in QED

- ✓ clarify if dy...
- ✓ clarify if FK or

clarify how

- winger mech. can be understood as a part of FK effect
 - above the threshold $\omega > 2m$ occurs in QED
 - nodifies the momentum spectrum

valid <mark>only</mark> when adiab<mark>atic ω</mark> « m

Semi-classical methods (e.g. worldline, WKB)

Aim of this study

Analytically show if FK effect occurs in QED

(e.g. worldline, WKB)

Perturbation theory in Furry picture

Perturbation theory in Furry picture (1/2)

Compute $d^3N/dp^3 = \langle a_{p,s}^{\dagger} a_{p,s} \rangle$ non-perturbatively w.r.t. strong slow \overline{E} , but perturbatively w.r.t. weak fast \mathcal{E}

Perturbation theory in Furry picture (1/2)

Compute $d^3N/dp^3 = \langle a_{p,s}^{\dagger} a_{p,s} \rangle$ non-perturbatively w.r.t. strong slow \overline{E} , but perturbatively w.r.t. weak fast \mathcal{E}

STEP 1 Separate the total E-field *E* into strong \overline{E} and weak \mathcal{E}

 $E = \overline{E} + \mathcal{E}$ with $\overline{E} \gg \mathcal{E}$

Perturbation theory in Furry picture (1/2)

Compute $d^3N/dp^3 = \langle a_{p,s}^{\dagger} a_{p,s} \rangle$ non-perturbatively w.r.t. strong slow \overline{E} , but perturbatively w.r.t. weak fast \mathcal{E}

STEP 1 Separate the total E-field *E* into strong \overline{E} and weak \mathcal{E}

 $E = \overline{E} + \mathcal{E}$ with $\overline{E} \gg \mathcal{E}$

STEP 2 Solve the Dirac eq. non-perturbatively w.r.t \overline{E} , but perturbatively w.r.t. \mathcal{E}

$$[i\partial - e\overline{\mathcal{A}} - m]\hat{\psi} = e\mathcal{A}\hat{\psi}$$
$$\implies \hat{\psi}(x) = \hat{\psi}^{(0)}(x) + \int_{-\infty}^{\infty} dy^4 S(x, y) e\mathcal{A}(y) \hat{\psi}^{(0)}(y) + O(|e\mathcal{A}|^2)$$

Here, $\hat{\psi}^{(0)}$ and *S* are **non-perturbatively dressed by** \overline{E} as

$$[i\partial - e\overline{A} - m]\widehat{\psi}^{(0)} = 0$$
$$[i\partial - e\overline{A} - m]S(x, y) = \delta^4(x - y)$$

Perturbation theory in Furry picture (2/2)

STEP 3 Compute in/out annihilation operators $\hat{a}_{p,s}^{\mathrm{in/out}}$, $\hat{b}_{p,s}^{\mathrm{in/out}}$ from $\hat{\psi}$

$$\begin{pmatrix} \hat{a}_{\boldsymbol{p},s}^{\text{in/out}} \\ \hat{b}_{-\boldsymbol{p},s}^{\text{in/out\dagger}} \end{pmatrix} \equiv \lim_{t \to -\infty/+\infty} \int d^3 x \begin{pmatrix} (u_{\boldsymbol{p},s} e^{-i\omega_{\boldsymbol{p}}t} e^{i\boldsymbol{p}\cdot\boldsymbol{x}})^{\dagger} \\ (v_{\boldsymbol{p},s} e^{+i\omega_{\boldsymbol{p}}t} e^{i\boldsymbol{p}\cdot\boldsymbol{x}})^{\dagger} \end{pmatrix} \hat{\psi}(x)$$

Perturbation theory in Furry picture (2/2)

STEP 3 Compute in/out annihilation operators $\hat{a}_{p,s}^{\mathrm{in/out}}$, $\hat{b}_{p,s}^{\mathrm{in/out}}$ from $\hat{\psi}$

$$\begin{pmatrix} \hat{a}_{\boldsymbol{p},s}^{\text{in/out}} \\ \hat{b}_{-\boldsymbol{p},s}^{\text{in/out}\dagger} \end{pmatrix} \equiv \lim_{t \to -\infty/+\infty} \int \mathrm{d}^3 \boldsymbol{x} \begin{pmatrix} (u_{\boldsymbol{p},s} \mathrm{e}^{-i\omega_{\boldsymbol{p}}t} \mathrm{e}^{i\boldsymbol{p}\cdot\boldsymbol{x}})^\dagger \\ (v_{\boldsymbol{p},s} \mathrm{e}^{+i\omega_{\boldsymbol{p}}t} \mathrm{e}^{i\boldsymbol{p}\cdot\boldsymbol{x}})^\dagger \end{pmatrix} \hat{\psi}(\boldsymbol{x})$$

 $\hat{o}_{p,s'}^{in}$, $\hat{o}_{p,s}^{out}$ are inequivalent $\hat{o}_{p,s}^{in} \neq \hat{o}_{p,s}^{out}$ and related with each other by a Bogoliubov transformation

$$\begin{pmatrix} \hat{a}_{\boldsymbol{p},s}^{\text{out}} \\ \hat{b}_{-\boldsymbol{p},s}^{\text{out}\dagger} \end{pmatrix} = \sum_{s'} \int d^3 \boldsymbol{p}' \begin{pmatrix} \alpha_{\boldsymbol{p},s;\boldsymbol{p}',s'} & \beta_{\boldsymbol{p},s;\boldsymbol{p}',s'} \\ -\beta_{\boldsymbol{p},s;\boldsymbol{p}',s'}^* & \alpha_{\boldsymbol{p},s;\boldsymbol{p}',s'}^* \end{pmatrix} \begin{pmatrix} \hat{a}_{\boldsymbol{p}',s'}^{\text{in}} \\ \hat{b}_{-\boldsymbol{p}',s'}^{\text{in}\dagger} \end{pmatrix}$$

where

$$\begin{aligned} \alpha_{p,s;p',s'} &= \int d^3 x_{+} \psi_{p,s}^{(0)\text{out}\dagger} \,_{+} \psi_{p',s'}^{(0)\text{in}} - i \int d^4 x_{+} \bar{\psi}_{p,s}^{(0)\text{out}} e\mathcal{A}_{+} \psi_{p',s'}^{(0)\text{in}} + O(|e\mathcal{A}|^2) \\ \beta_{p,s;p',s'} &= \int d^3 x_{-} \psi_{p,s}^{(0)\text{out}\dagger} \,_{+} \psi_{p',s'}^{(0)\text{in}} - i \int d^4 x_{-} \bar{\psi}_{p,s}^{(0)\text{out}} e\mathcal{A}_{+} \psi_{p',s'}^{(0)\text{in}} + O(|e\mathcal{A}|^2) \end{aligned}$$

Here, $\pm \psi_{p,s}^{(0)\text{in/out}}$ are sol. of the Dirac eq. **dressed by** $e\overline{A}$ w/ different B.C. $[i\partial - e\overline{A} - m] \pm \psi_{p,s}^{(0)\text{in/out}} = 0 \quad \text{w/} \lim_{t \to -\infty/+\infty} \begin{pmatrix} \pm \psi_{p,s}^{(0)\text{in/out}} \\ \pm \psi_{p,s}^{(0)\text{in/out}} \end{pmatrix} = \begin{pmatrix} u_{p,s}e^{-i\omega_p t}e^{ip \cdot x} \\ v_{p,s}e^{-i\omega_p t}e^{ip \cdot x} \end{pmatrix}$

Perturbation theory in Furry picture (2/2) Compute in/out annihilation operators $\hat{a}_{p,s}^{\mathrm{in/out}}$, $\hat{b}_{p,s}^{\mathrm{in/out}}$ from $\hat{\psi}$ STEP 3 $\begin{pmatrix} \hat{a}_{\boldsymbol{p},s}^{m/\text{out}} \\ \hat{b}_{-\boldsymbol{n}\,s}^{in/\text{out}\dagger} \end{pmatrix} \equiv \lim_{t \to -\infty/+\infty} \int d^3 x \begin{pmatrix} (u_{\boldsymbol{p},s} e^{-i\omega_{\boldsymbol{p}\,t}} e^{i\boldsymbol{p}\cdot\boldsymbol{x}})^{\dagger} \\ (v_{\boldsymbol{p},s} e^{+i\omega_{\boldsymbol{p}\,t}} e^{i\boldsymbol{p}\cdot\boldsymbol{x}})^{\dagger} \end{pmatrix} \hat{\psi}(x)$ $\hat{o}_{p,s}^{\text{in}}$, $\hat{o}_{p,s}^{\text{out}}$ are inequivalent $\hat{o}_{p,s}^{\text{in}} \neq \hat{o}_{p,s}^{\text{out}}$ and related with each other by a Bogoliubov transformation $\begin{pmatrix} \hat{a}_{\boldsymbol{p},s}^{\text{out}} \\ \hat{b}_{-\boldsymbol{p},s}^{\text{out}\dagger} \end{pmatrix} = \sum \int d^3 \boldsymbol{p}' \begin{pmatrix} \alpha_{\boldsymbol{p},s;\boldsymbol{p}',s'} & \beta_{\boldsymbol{p},s;\boldsymbol{p}',s'} \\ -\beta_{\boldsymbol{p},s;\boldsymbol{p}',s'}^* & \alpha_{\boldsymbol{p},s;\boldsymbol{p}',s'}^* \end{pmatrix} \begin{pmatrix} \hat{a}_{\boldsymbol{p}',s'}^{\text{in}} \\ \hat{b}_{-\boldsymbol{p},s}^{\text{in}\dagger} \end{pmatrix}$ where $\alpha_{p,s;p',s'} = \int_{a} d^{3}x \, _{+}\psi_{p,s}^{(0)\text{out}\dagger} \, _{+}\psi_{p',s'}^{(0)\text{in}} - i \int_{a} d^{4}x \, _{+}\bar{\psi}_{p,s}^{(0)\text{out}} e\mathcal{A} \, _{+}\psi_{p',s'}^{(0)\text{in}} + O(|e\mathcal{A}|^{2})$ $\beta_{p,s;p',s'} = \int d^3x \, _-\psi_{p,s}^{(0)\text{out}\dagger} \, _+\psi_{p',s'}^{(0)\text{in}} - i \int d^4x \, _-\bar{\psi}_{p,s}^{(0)\text{out}} e\mathcal{A} \, _+\psi_{p',s'}^{(0)\text{in}} + O(|e\mathcal{A}|^2)$ Here, $\pm \psi_{p,s}^{(0)in/out}$ are sol. of the Dirac eq. **dressed by** $e\overline{A}$ w/ different B.C. $[i\partial - e\overline{A} - m] \pm \psi_{p,s}^{(0)\text{in/out}} = 0 \quad \text{W/} \lim_{t \to -\infty/+\infty} \begin{pmatrix} \pm \psi_{p,s}^{(0)\text{in/out}} \\ \pm \psi_{p,s}^{(0)\text{in/out}} \end{pmatrix} = \begin{pmatrix} u_{p,s} e^{-i\omega_p t} e^{ip \cdot x} \\ v_{n,s} e^{-i\omega_p t} e^{ip \cdot x} \end{pmatrix}$ Compute the in-vacuum expectation value of # operator c.f.) evaluation based on WKB $\frac{\mathrm{d}^{3}N_{e}}{\mathrm{d}\boldsymbol{p}^{3}} \equiv \langle \mathrm{vac}; \mathrm{in} | a_{\boldsymbol{p},s}^{\mathrm{out}\dagger} a_{\boldsymbol{p},s}^{\mathrm{out}\dagger} | \mathrm{vac}; \mathrm{in} \rangle = \sum_{i} \int \mathrm{d}^{3}\boldsymbol{p}' \left| \beta_{\boldsymbol{p},s;\boldsymbol{p}',s'} \right|^{2}$ (valid for adiabatic case) [Torgrimsson *et al.* 2017]

Assume \overline{E} is sufficiently slow (i.e., static) and spatially uniform

- ightarrow analytical sol. of Dirac eq. $_{\pm}\psi^{(0)\mathrm{in/out}}_{p,s}$ is known
- → one can evaluate $\beta_{p,s;p',s'}$ analytically !!! [HT 2019]

Assume \overline{E} is sufficiently slow (i.e., static) and spatially uniform

- \Rightarrow analytical sol. of Dirac eq. $_{\pm}\psi^{(0)in/out}_{p,s}$ is known
- → one can evaluate $\beta_{p,s;p',s'}$ analytically !!! [HT 2019]

$$\frac{d^{3}N_{e}}{d\boldsymbol{p}^{3}} = \frac{V}{(2\pi)^{3}} \exp\left[-\frac{\pi(m^{2}+\boldsymbol{p}_{\perp}^{2})}{e\overline{E}}\right] \times \left|1 + \frac{1}{2}\frac{m^{2}+\boldsymbol{p}_{\perp}^{2}}{e\overline{E}}\int_{0}^{\infty}d\omega\frac{\tilde{\mathcal{E}}(\omega)}{\overline{E}}\exp\left[-\frac{i}{4}\frac{\omega^{2}+4\omega p_{\parallel}}{e\overline{E}}\right]{}_{1}F_{1}\left(1-\frac{i}{2}\frac{m^{2}+\boldsymbol{p}_{\perp}^{2}}{e\overline{E}};2;\frac{i}{2}\frac{\omega^{2}}{e\overline{E}}\right)\right|^{2}$$

NOTE: $\overline{E} \parallel \mathcal{E}$ and $\mathcal{E} = \mathcal{E}(t)$ (i.e., spatially uniform) are assumed; for generalization, see [Huang, <u>HT</u> 2019], [Itakura, <u>HT</u> (in prep)]

Assume \overline{E} is sufficiently slow (i.e., static) and spatially uniform

- ightarrow analytical sol. of Dirac eq. $_{\pm}\psi^{(0)\mathrm{in/out}}_{p,s}$ is known
- → one can evaluate $\beta_{p,s;p',s'}$ analytically !!! [HT 2019]

$$\frac{d^{3}N_{e}}{dp^{3}} = \frac{V}{(2\pi)^{3}} \exp\left[-\frac{\pi(m^{2}+p_{\perp}^{2})}{e\overline{E}}\right]$$

$$\times \left|1 + \frac{1}{2}\frac{m^{2}+p_{\perp}^{2}}{e\overline{E}}\int_{0}^{\infty}d\omega\frac{\tilde{\mathcal{E}}(\omega)}{\overline{E}}\exp\left[-\frac{i}{4}\frac{\omega^{2}+4\omega p_{\parallel}}{e\overline{E}}\right]{}_{1}F_{1}\left(1-\frac{i}{2}\frac{m^{2}+p_{\perp}^{2}}{e\overline{E}};2;\frac{i}{2}\frac{\omega^{2}}{e\overline{E}}\right)\right|^{2}$$

$$NOTE: \ \overline{E} \parallel \mathcal{E} \ \text{and} \ \mathcal{E} = \mathcal{E}(t) \ (i.e., \text{ spatially uniform}) \ \text{are assumed};$$
for generalization, see [Huang, HT 2019], [Itakura, HT (in prep)]

usual Schwinger formula by static \overline{E}

Assume \overline{E} is sufficiently slow (i.e., static) and spatially uniform

- \Rightarrow analytical sol. of Dirac eq. $_{\pm}\psi^{(0)in/out}_{p,s}$ is known
- \rightarrow one can evaluate $\beta_{p,s;p',s'}$ analytically !!! [HT 2019]

usual Schwinger formula by static \overline{E}

"perturbative assistance" by ${\cal E}$

Assume \overline{E} is sufficiently slow (i.e., static) and spatially uniform

- ightarrow analytical sol. of Dirac eq. $_{\pm}\psi^{(0)\mathrm{in/out}}_{p,s}$ is known
- → one can evaluate $\beta_{p,s;p',s'}$ analytically !!! [HT 2019]

$$\frac{d^{3}N_{e}}{dp^{3}} = \frac{V}{(2\pi)^{3}} \exp\left[-\frac{\pi(m^{2}+p_{\perp}^{2})}{e\overline{E}}\right]$$

$$\times \left|1 + \frac{1}{2}\frac{m^{2}+p_{\perp}^{2}}{e\overline{E}}\int_{0}^{\infty}d\omega\frac{\overline{\mathcal{E}}(\omega)}{\overline{E}}\exp\left[-\frac{i}{4}\frac{\omega^{2}+4\omega p_{\parallel}}{e\overline{E}}\right]{}_{1}F_{1}\left(1-\frac{i}{2}\frac{m^{2}+p_{\perp}^{2}}{e\overline{E}};2;\frac{i}{2}\frac{\omega^{2}}{e\overline{E}}\right)\right|^{2}$$

$$NOTE: \ \overline{E} \parallel \mathcal{E} \ \text{and} \ \mathcal{E} = \mathcal{E}(t) \ (i.e., \text{ spatially uniform}) \ \text{are assumed}; \ \text{for generalization, see [Huang, HT 2019], [Itakura, HT (in prep)]}$$

$$usual \ \text{Schwinger formula by static } \overline{E}$$

$$\text{`slow limit } \omega/\sqrt{e\overline{E}} \ll 1: \ \Box \ \text{dominates} \Rightarrow usual \ \text{Schwinger pair production} \ \frac{d^{3}N_{e}}{dp^{3}} \sim \frac{V}{(2\pi)^{3}} \exp\left[-\frac{\pi(m^{2}+p_{\perp}^{2})}{e\overline{E}}\right] \left|1 + \frac{\pi}{2}\frac{m^{2}+p_{\perp}^{2}}{e\overline{E}}\frac{\mathcal{E}}{\overline{E}}\right|^{2} \sim \frac{V}{(2\pi)^{3}} \exp\left[-\frac{\pi(m^{2}+p_{\perp}^{2})}{e(\overline{\mathcal{E}}+\mathcal{E})}\right]$$

$$\text{`fast limit } \omega/\sqrt{e\overline{E}} \gg 1: \ \Box \ \text{dominates} \Rightarrow perturbative production} \ \frac{d^{3}N_{e}}{dp^{3}} \sim \frac{V}{(2\pi)^{3}}\frac{1}{4}\frac{m^{2}+p_{\perp}^{2}}{\omega_{p}^{2}}\frac{|e\widetilde{\mathcal{E}}(2\omega_{p})|^{2}}{\omega_{p}^{2}}$$

INTRODUCTION \mathbf{J} THEORY \mathbf{J} RESULTS \mathbf{J} **SUMMARY**

Total production number N

✓ For a monochromatic E-field $\mathcal{E} = \mathcal{E}_0 \cos \omega t$

Total production number N

✓ For a monochromatic E-field $\mathcal{E} = \mathcal{E}_0 \cos \omega t$

✓ exactly the same as cond-mat ➡ FK effect does occur in QED!

- production is enhanced below the threshold (dyn. ass. Schwinger mech.)
- not only enhancement, but also oscillation above threshold (~ FK oscillation)
- very sharp peak at the threshold in the number difference c.f.)

c.f.) modulation spectroscopy

Interpretation of the oscillation

 \checkmark quantum tunneling \rightarrow dynamically assisted Schwinger mechanism

\checkmark quantum reflection \rightarrow FK oscillation

- non-uniform prob. dist. due to interference b/w in-coming and reflected waves

- production occurs most efficiently at the maxima

Momentum distribution d^3N_e/dp^3

- ✓ FK effect: enhancement below threshold & oscillation above threshold
- ✓ the location of the perturbative peak is modified due to reflection
- ✓ excellent agreement b/w our analytical formula and numerical results

INTRODUCTION 1 THEORY \mathbf{J} RESULTS \mathbf{J} **SUMMARY**

Summary

- ✓ I discussed spontaneous particle production from the vacuum (Schwinger mechanism) in the presence of a strong slow E-field superimposed by a weak fast E-field
- ✓ I derived an analytical formula for the production number based on the perturbation theory in the Furry picture
 - reproduces the numerical results very well as long as $\overline{E} \gg \mathcal{E}$

✓ I claimed that a QED analog of Franz-Keldysh effect occurs:

- enhancement below the threshold (dyn. ass. Schwinger mech.)
- oscillation above the threshold (FK oscillation)
- the location of the perturbative peak in d^3N_e/dp^3 is modified
- \checkmark Not only quantum tunneling, but also reflection is important