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Brief summary

 a generalization of the dynamically assisted Schwinger mechanism
 non-trivial oscillating pattern in the production 

Derive an analytical formula for the production based on the 
perturbation theory in the Furry picture

Spontaneous particle production from the vacuum (Schwinger mech.) 
by a strong slow E-field superimposed by a weak fast E-field

A QED analog of Franz-Keldysh effect occurs

What

How

Result
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Schwinger mechanism

 QED analog of electrical breakdown of a semi-conductor in cond-mat 
(Landau-Zener transition)

Particles are spontaneously produced from the vacuum in 
the presence of a strong slow electric field 

E-field

vacuum ＝ Dirac sea

gap ~2𝜔𝜔𝒑𝒑

tunneling



Schwinger mechanism

 QED analog of electrical breakdown of a semi-conductor in cond-mat 
(Landau-Zener transition)

Particles are spontaneously produced from the vacuum in 
the presence of a strong slow electric field 

E-field

vacuum ＝ Dirac sea

gap ~2𝜔𝜔𝒑𝒑

tunneling

-

- very well formulated for a static 𝑬𝑬 = 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜. (but not well for time-dep. 𝐸𝐸)
d3𝑁𝑁𝑒𝑒
d𝒑𝒑3 =

𝑉𝑉
2𝜋𝜋 3 exp[−

𝜋𝜋(𝑚𝑚2+𝒑𝒑⊥2 )
𝑒𝑒𝑒𝑒 ] [Schwinger 1951]
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Q1: Can we enhance the production rate ? 

Q2: What does happen if E becomes time-dep. ?
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Enhancement by weak fast E-field
Dynamically assisted Schwinger mechanism
= Schwinger mechanism is dynamically enhanced by superimposing 

a weak fast time-depending 𝓔𝓔-field on top of a strong slow �𝑬𝑬-field

[Schutzhold, Gies, Dunne 2008]

tunnelingweak fast 𝓔𝓔

 perturbative kick by 𝓔𝓔 reduces the tunneling length ➡ big enhancement
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= Schwinger mechanism is dynamically enhanced by superimposing 

a weak fast time-depending 𝓔𝓔-field on top of a strong slow �𝑬𝑬-field

[Schutzhold, Gies, Dunne 2008]

tunnelingweak fast 𝓔𝓔

 perturbative kick by 𝓔𝓔 reduces the tunneling length ➡ big enhancement

Deepening our understanding of dyn. ass. Schwinger mech. is important
✔ for the up-coming laser experiments (e.g. ELI, HiPER)
✔ for going beyond the Schwinger pair production for a static E-field 

- not observed in exp. yet, but may be observed in the very near future

- usually studied w/i semi-classical methods (e.g. worldline, WKB), which are 
valid if sufficiently adiabatic (i.e., subcrit. 𝒆𝒆�𝑬𝑬 ≪ 𝑚𝑚2, not-so-fast 𝓔𝓔 s.t. 𝜔𝜔 ≪ 𝑚𝑚)



A very similar situation has been studied both theoretically and 
experimentally more than 60 years in cond-mat !!!

Idea: Franz-Keldysh effect in cond-mat

 Apply a strong slow �𝑬𝑬-field and a weak fast time-depending 𝓔𝓔-field 
(or a dynamical photon) onto a semi-conductor

 Measure photo-absorption rate (instead of e-h pair production number)
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Idea: Franz-Keldysh effect in cond-mat

 Apply a strong slow �𝑬𝑬-field and a weak fast time-depending 𝓔𝓔-field 
(or a dynamical photon) onto a semi-conductor

 Measure photo-absorption rate (instead of e-h pair production number)

ph
ot

o-
ab

so
rp

tio
n 

ra
te

(photon energy) - (gap energy)

w/ �𝑬𝑬-field
w/o �𝑬𝑬-field

difference
(■ー■)

Theory

 abs. rate is enhanced below the threshold (looks like dyn. ass. Schwinger mech. (?))

 not only enhancement, but also oscillation above threshold (FK oscillation)

Q: Is this really similar?  Does FK effect equally occur for QED?

Exp. (w/ Si) 

[Yacoby 1966]

[Franz 1958] [Keldysh 1958]
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Aim of this study
Analytically show if FK effect occurs in QED

 clarify if dyn. ass. Schwinger mech. can be understood as a part of FK effect

 clarify if FK oscillation above the threshold 𝜔𝜔 > 2𝑚𝑚 occurs in QED

 clarify how FK effect modifies the momentum spectrum
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Perturbation theory in 
Furry picture

OK
[Furry 1951]
[Fradkin et al. 1991]
[Torgrimsson et al. 2017]

valid as long as
𝓔𝓔 is weak 𝒆𝒆𝓔𝓔 ≪ 𝒎𝒎𝟐𝟐,𝒆𝒆�𝑬𝑬
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Perturbation theory in Furry picture (1/2)

Compute d3𝑁𝑁/d𝒑𝒑3 = 𝑎𝑎𝒑𝒑,𝑠𝑠
† 𝑎𝑎𝒑𝒑,𝑠𝑠 non-perturbatively w.r.t. 

strong slow �𝑬𝑬, but perturbatively w.r.t. weak fast 𝓔𝓔
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𝑬𝑬 = �𝑬𝑬 + 𝓔𝓔 with �𝑬𝑬 ≫ 𝓔𝓔

STEP 2 Solve the Dirac eq. non-perturbatively w.r.t �𝑬𝑬, but perturbatively w.r.t. 𝓔𝓔

𝑖𝑖𝜕𝜕 − 𝒆𝒆�𝑨𝑨 −𝑚𝑚 �𝜓𝜓 = 𝒆𝒆𝓐𝓐 �𝜓𝜓
�𝜓𝜓 𝑥𝑥 = �𝜓𝜓(0) 𝑥𝑥 + ∫−∞

∞ d𝑦𝑦4𝑆𝑆 𝑥𝑥,𝑦𝑦 𝒆𝒆𝒆𝒆 (𝑦𝑦) �𝜓𝜓 0 𝑦𝑦 + 𝑂𝑂(|𝒆𝒆𝓐𝓐|2)

/        / /

/

Here, �𝜓𝜓(0) and 𝑆𝑆 are non-perturbatively dressed by �𝑬𝑬 as

/        /𝑖𝑖𝜕𝜕 − 𝒆𝒆�𝑨𝑨 −𝑚𝑚 �𝜓𝜓(0) = 0
𝑖𝑖𝜕𝜕 − 𝒆𝒆�𝑨𝑨 −𝑚𝑚 𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝛿𝛿4(𝑥𝑥 − 𝑦𝑦)/        /



STEP 3 Compute in/out annihilation operators �𝑎𝑎𝑝𝑝,𝑠𝑠
in/out, �𝑏𝑏𝑝𝑝,𝑠𝑠

in/out from �𝜓𝜓

�𝑎𝑎𝒑𝒑,𝑠𝑠
in/out

�𝑏𝑏−𝒑𝒑,𝑠𝑠
in/out† ≡ lim

𝑡𝑡→− ⁄∞ +∞
�d3𝒙𝒙
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∗

�𝑎𝑎𝒑𝒑′,𝑠𝑠′in
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(0)out†

+𝜓𝜓𝒑𝒑′,𝑠𝑠′
(0)in − 𝑖𝑖 �𝑑𝑑4𝑥𝑥 − �𝜓𝜓𝒑𝒑,𝑠𝑠
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0 in/out = 0 w/ lim

𝑡𝑡→− ⁄∞ +∞
+𝜓𝜓𝒑𝒑,𝑠𝑠

0 in/out

−𝜓𝜓𝒑𝒑,𝑠𝑠
0 in/out = 𝑢𝑢𝒑𝒑,𝑠𝑠e−𝑖𝑖𝜔𝜔𝒑𝒑𝑡𝑡e𝑖𝑖𝒑𝒑⋅𝒙𝒙

𝑣𝑣𝒑𝒑,𝑠𝑠e−𝑖𝑖𝜔𝜔𝒑𝒑𝑡𝑡e𝑖𝑖𝒑𝒑⋅𝒙𝒙
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(0)out𝒆𝒆𝓐𝓐 +𝜓𝜓𝒑𝒑′,𝑠𝑠′
(0)in + 𝑂𝑂(|𝒆𝒆𝒆𝒆|2)

𝛽𝛽𝒑𝒑,𝑠𝑠;𝒑𝒑′,𝑠𝑠𝑠 = �d3𝒙𝒙 −𝜓𝜓𝒑𝒑,𝑠𝑠
(0)out†

+𝜓𝜓𝒑𝒑′,𝑠𝑠′
(0)in − 𝑖𝑖 �𝑑𝑑4𝑥𝑥 − �𝜓𝜓𝒑𝒑,𝑠𝑠

(0)out𝒆𝒆𝓐𝓐 +𝜓𝜓𝒑𝒑′,𝑠𝑠′
(0)in + 𝑂𝑂(|𝒆𝒆𝒆𝒆|2)

Here, ±𝜓𝜓𝒑𝒑,𝑠𝑠
0 in/out are sol. of the Dirac eq. dressed by 𝒆𝒆�𝑨𝑨 w/ different B.C. 

𝑖𝑖𝜕𝜕 − 𝒆𝒆�𝑨𝑨 −𝑚𝑚 ±𝜓𝜓𝒑𝒑,𝑠𝑠
0 in/out = 0 w/ lim

𝑡𝑡→− ⁄∞ +∞
+𝜓𝜓𝒑𝒑,𝑠𝑠

0 in/out

−𝜓𝜓𝒑𝒑,𝑠𝑠
0 in/out = 𝑢𝑢𝒑𝒑,𝑠𝑠e−𝑖𝑖𝜔𝜔𝒑𝒑𝑡𝑡e𝑖𝑖𝒑𝒑⋅𝒙𝒙

𝑣𝑣𝒑𝒑,𝑠𝑠e−𝑖𝑖𝜔𝜔𝒑𝒑𝑡𝑡e𝑖𝑖𝒑𝒑⋅𝒙𝒙

Perturbation theory in Furry picture (2/2)

STEP 4 Compute the in-vacuum expectation value of # operator 

/

/

/ /

d3𝑁𝑁𝑒𝑒
d𝒑𝒑3

≡ vac; in 𝑎𝑎𝒑𝒑,𝑠𝑠
out†𝑎𝑎𝒑𝒑,𝑠𝑠

out vac; in = �
𝑠𝑠𝑠

�d3𝒑𝒑′ 𝛽𝛽𝒑𝒑,𝑠𝑠;𝒑𝒑′,𝑠𝑠′
2 c.f.) evaluation based on WKB 

(valid for adiabatic case)
[Torgrimsson et al. 2017]
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𝑑𝑑3𝑁𝑁𝑒𝑒
𝑑𝑑𝒑𝒑3

∼
𝑉𝑉
2𝜋𝜋 3

1
4
𝑚𝑚2 + 𝒑𝒑⊥2

𝜔𝜔𝒑𝒑2
|𝑒𝑒ℰ̃ 2𝜔𝜔𝒑𝒑 |2

𝜔𝜔𝒑𝒑2

 slow limit ⁄𝝎𝝎 𝒆𝒆�𝑬𝑬 ≪ 𝟏𝟏: ■ dominates ➡ usual Schwinger pair production

 fast limit ⁄𝝎𝝎 𝒆𝒆�𝑬𝑬 ≫ 𝟏𝟏:  ■ dominates ➡ perturbative production
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= 2.5

 For a monochromatic E-field 𝓔𝓔 = 𝓔𝓔𝟎𝟎 cos 𝜔𝜔𝜔𝜔
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 exactly the same as cond-mat ➨ FK effect does occur in QED! 
- production is enhanced below the threshold (dyn. ass. Schwinger mech.)

- not only enhancement, but also oscillation above threshold (~ FK oscillation)
- very sharp peak at the threshold in the number difference c.f.) modulation 

spectroscopy



Interpretation of the oscillation

 quantum tunneling ➡ dynamically assisted Schwinger mechanism

- non-uniform prob. dist. due to interference b/w in-coming and reflected waves

 quantum reflection ➡ FK oscillation

✖ ✖

- production occurs most efficiently at the maxima

probability density



Momentum distribution ⁄d3𝑁𝑁𝑒𝑒 d𝒑𝒑𝟑𝟑

momentum dist.
2𝜋𝜋 3

𝑉𝑉
d3𝑁𝑁𝑒𝑒
d𝒑𝒑𝟑𝟑

frequency 𝜔𝜔/ 𝑒𝑒 �𝐸𝐸

For 𝑚𝑚
𝑒𝑒 �𝐸𝐸

= 2.5

 FK effect: enhancement below threshold & oscillation above threshold

 excellent agreement b/w our analytical formula and numerical results

 the location of the perturbative peak is modified due to reflection
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Summary
 I discussed spontaneous particle production from the 

vacuum (Schwinger mechanism) in the presence of a 
strong slow E-field superimposed by a weak fast E-field

 I derived an analytical formula for the production number 
based on the perturbation theory in the Furry picture

 I claimed that a QED analog of Franz-Keldysh effect occurs: 
- enhancement below the threshold (dyn. ass. Schwinger mech.)
- oscillation above the threshold (FK oscillation)
- the location of the perturbative peak in ⁄d3𝑁𝑁𝑒𝑒 d𝒑𝒑𝟑𝟑 is modified

 Not only quantum tunneling, but also reflection is important 

- reproduces the numerical results very well as long as �𝑬𝑬 ≫ 𝓔𝓔
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