How time-dependent electric fields affect the Schwinger mechanism?

Hidetoshi TAYA
Keio U. \rightarrow RIKEN ${ }_{\text {(from this Apri) }}$

What is the Schwinger mechanism?

[Sauter (1932)] [Heisenberg, Euler (1936)] [Schwinger (1951)]
\checkmark Vacuum pair production occurs in the presence of strong fields
Intuitive picture for a slow electric field = quantum tunneling
positive energy band

slow \& strong E

What is the Schwinger mechanism?

\checkmark Vacuum pair production occurs in the presence of strong fields
Intuitive picture for a slow electric field = quantum tunneling

slow \& strong E

\checkmark For constant strong E-field $E(t, x)=E$, it's understood well theoretically)

$$
N_{e^{ \pm}}=\frac{(e E)^{2} V T}{(2 \pi)^{3}} \times \exp \left[-\pi \frac{m^{2}}{e E}\right] \sim \exp [-\# \times(\text { gap height }) \times(\text { gap length })]
$$

- Non-perturbative \Rightarrow Interesting, since it is the unexplored region of QED (or QFT)
- Vacuum process \Rightarrow Fundamental, since all the physical processes occur on top of vacuum
- However, exponentially suppressed i.t.o. mass \Rightarrow Not confirmed by experiments yet...

$$
\text { HERCULES laser } e E \sim \sqrt{10^{22} \mathrm{~W} / \mathrm{cm}^{2}} \sim(0.01 \mathrm{MeV})^{2} \ll m_{e}^{2} \sim \sqrt{10^{29} \mathrm{~W} / \mathrm{cm}^{2}} \sim(0.5 \mathrm{MeV})^{2}
$$

Timeliness

\checkmark Now is the best time to study the Schwinger mechanism !
Developments in experimental technologies \Rightarrow Novel strong-field sources

Timeliness

\checkmark Now is the best time to study the Schwinger mechanism !

Developments in experimental technologies \Rightarrow Novel strong-field sources
ex.1) Intense lasers

ex.2) Heavy-ion collisions

- (ultra)peripheral collisions $e E, e B \sim \frac{\alpha Z v \gamma}{r^{2}} \sim \alpha Z \gamma \times m_{\pi}^{2}$ [Skokov, Illarionov, Toneev (2009)] [Deng, Huang (2012)]
- glasma (color flux tube) $g E_{\text {color }}, g B_{\text {color }} \sim Q_{\mathrm{s}}^{2} \sim O$ (1) GeV^{2}
- Also in other geometries:
- asymmetric coll. [Hirono, Hongo, Hirano (2014)] [Voronyuk, et al (2014)]
- low-energy coll. [Review: Rafelski, et al (2014)] [Maltsev et al (2019)]
[Allor, Cohen, McGady (2008)] [Solinas, Amoretti, Giazotto (2021)]
ex.3) Cond-mat analogues: Graphene, Cold atom, Superconductor, Semiconductor, ...
[Szpak, Shutzhold (2012)]
[Thesis by Linder; 1807.08050]

Timeliness

\checkmark Now is the best time to study the Schwinger mechanism !

Developments in experimental technologies \Rightarrow Novel strong-field sources
ex.1) Intense lasers

ex.2) Heavy-ion collisions

- (ultra)peripheral collisions $e E, e B \sim \frac{\alpha Z v \gamma}{r^{2}} \sim \alpha Z \gamma \times m_{\pi}^{2}$ [Skokov, Illarionov, Toneev (2009)] [Deng, Huang (2012)]
- glasma (color flux tube) $g E_{\text {color }}, g B_{\text {color }} \sim Q_{\mathrm{S}}^{2} \sim O(1) \mathrm{GeV}^{2}$
- Also in other geometries:
- asymmetric coll. [Hirono, Hongo, Hirano (2014)] IVoronyuk, et al (2014)]
- low-energy coll. [Review: Rafelski, et al (2014)] [Maltsev et al (2019)]
[Allor, Cohen, McGady (2008)] [Solinas, Amoretti, Giazotto (2021)]
ex.3) Cond-mat analogues: Graphene, Cold atom, Superconductor, Semiconductor, ...
[Szpak, Shutzhold (2012)] [Thesis by Linder; 1807.08050]
\checkmark Schwinger's result is insufficient for actual problems \Rightarrow Beyond Schwinger !
- Inhomogeneous field (e.g., time- \& space-dependence, more efficient field config., ...)
- Realtime dynamics (e.g., backreaction, intermediate particle number, ...)
- Higher loop effects (e.g., radiation, mass shift, ...)
- Other observables (e.g., spin, chirality, high-harmonic generation...)

Today's talk

Discuss the Schwinger mech. under time-depending E-field

Part I: Interplay b/w non-pert. \& pert. production mechanisms
[HT, Fujii, Itakura, PRD (2014)]
[HT et al., JHEP (2021)]

Part II: Dynamically assisted Schwinger mechanism
[HT, PRD (2019)]
[Huang, HT, PRD (2019)]
[Huang, Matsuo, HT, PTEP (2019)]
Part III: Dynamical assistance to chirality production

\Downarrow
 Part I:

Interplay b/w non-pert. \& pert. production mechanisms

Dynamically assisted Schwinger mechanism Part III:
Dynamical assistance to chirality production

Background (1/2): Interplay b/w non-pert. \& pert. mech.

\checkmark Consider time-dependent E-field, having strength $e E_{0}$ and frequency Ω

Background (1/2): Interplay b/w non-pert. \& pert. mech.

\checkmark Consider time-dependent E-field, having strength $e E_{0}$ and frequency Ω

- The tunneling picture should break down if the frequency Ω is large

Non-pert. tunneling $N \sim \exp \left[\# / e E_{0}\right]$

Tunneling time $\Delta t \sim \frac{2 m}{e E}$
\Rightarrow E-field should be slower than Δt
$\Rightarrow \Omega^{-1} \gtrsim \Delta t$
$\Rightarrow 1 \gtrsim \frac{\Delta t}{\Omega^{-1}}=\frac{\Omega m}{e E} \equiv \gamma$ (Keldysh parameter)

Background (1/2): Interplay b/w non-pert. \& pert. mech.

\checkmark Consider time-dependent E-field, having strength $e E_{0}$ and frequency Ω

- The tunneling picture should break down if the frequency Ω is large

- For large Ω, E-field may behave like a photon and interact incoherently (perturbatively)

Background (2/2): Semi-classical analysis

- The interplay has been "confirmed" by (but only by) semi-classical analysis
- Trans-series expansion in terms of \hbar
- Steepest descent analysis [Brezin, Itzykson (1970)]
- Imaginary-time method [Popov (1972)]
$N=\sum_{n, m} N_{n, m} \hbar^{n} \mathrm{e}^{-m S / \hbar}=\left(N_{0,1}+O(\hbar)\right) \mathrm{e}^{-S / \hbar}+O\left(\mathrm{e}^{-2 S / \hbar}\right)$
- Divergent asymptotic series method [Berry (1989)]
- Worldline instanton method [Dunne, Shubert (2005)]
- (exact) WKB [HT, Fujimori, Misumi, Nitta, Sakai (2020)]
- Valid in the slow limit $\hbar \ll 1 \Leftrightarrow \Omega \ll 1: \quad \because \mathrm{i} \hbar \partial_{t} \psi=H(\Omega t) \psi \underset{\tau \equiv t / \hbar}{ } \mathrm{i} \partial_{\tau} \psi=H(\hbar \Omega \tau) \psi$
- Production number N is controlled solely by the Keldysh parameter $\gamma \equiv \frac{m \Omega}{e E_{0}} \quad$ [Keldysh (1965)]

$$
\begin{aligned}
& S=\pi \frac{m^{2}}{e E_{0}} g(\gamma) \xrightarrow[\text { Example: } e E(t)=e E_{0} \cos (\Omega t)]{ }\left\{\begin{array}{ll}
\pi \frac{m^{2}}{e E_{0}}+O\left(\gamma^{1}\right) & \text { (slow limit } \gamma \ll 1 \text {) } \\
\frac{2 m}{\Omega} \ln \gamma^{2}+\text { const. }+O\left(\gamma^{-1}\right) & \text { (fast limit } \gamma \gg 1 \text {) } \\
\begin{array}{ll}
\text { See, e.g., [Dunne, Gies, Schubert, Wang (2006)] } \\
\text { for an explicit expression for } g(\gamma)
\end{array} &
\end{array} \text { \# of photons } \begin{array}{l}
\text { pert. power-dep. } \\
\text { after exponentiation }
\end{array}\right.
\end{aligned}
$$

Background (2/2): Semi-classical analysis

- The interplay has been "confirmed" by (but only by) semi-classical analysis
- Trans-series expansion in terms of \hbar
- Steepest descent analysis [Brezin, Itzykson (1970)]
- Imaginary-time method [Popov (1972)]
$N=\sum_{n, m} N_{n, m} \hbar^{n} \mathrm{e}^{-m S / \hbar}=\left(N_{0,1}+O(\hbar)\right) \mathrm{e}^{-S / \hbar}+O\left(\mathrm{e}^{-2 S / \hbar}\right)$
- Divergent asymptotic series method [Berry (1989)]
- Worldline instanton method [Dunne, Shubert (2005)]
- (exact) WKB [HT, Fujimori, Misumi, Nitta, Sakai (2020)]
- Valid in the slow limit $\hbar \ll 1 \Leftrightarrow \Omega \ll 1: \quad \because \mathrm{i} \hbar \partial_{t} \psi=H(\Omega t) \psi \underset{\tau \equiv t / \hbar}{ } \mathrm{i} \partial_{\tau} \psi=H(\hbar \Omega \tau) \psi$
- Production number N is controlled solely by the Keldysh parameter $\gamma \equiv \frac{\tau \equiv t / \hbar}{e E_{0}} \quad$ [Keldysh (1965)]

$$
\begin{array}{ll}
S=\pi \frac{m^{2}}{e E_{0}} g(\gamma) \xrightarrow[\text { Example: } e E(t)=e E_{0} \cos (\Omega t)]{ }\left\{\begin{array}{cl}
\pi \frac{m^{2}}{e E_{0}}+O\left(\gamma^{1}\right) & \text { (slow limit } \gamma \ll 1 \text {) } \\
\frac{2 m}{\Omega} \ln \gamma^{2}+\text { const. }+O\left(\gamma^{-1}\right) & \text { (fast limit } \gamma \gg 1)
\end{array}\right. \\
\begin{array}{ll}
\text { See, e.g., [Dunne, Gies, Schubert, Wang (2006)] } \\
\text { for an explicit expression for } g(\gamma)
\end{array} & \text { \# of photons } \begin{array}{l}
\text { pert. power-dep. } \\
\text { after exponentiation }
\end{array}
\end{array}
$$

\checkmark However, you should not be convinced with the semi-classical argument

- Fast limit $\gamma \gg 1$ is dangerous
\Rightarrow Q1: When are semi-classical methods really OK i.t.o. Ω ?
- Another dimensionless parameter should exist
$\because 3$ dimensionful parameters $m, e E_{0}, \Omega$

$\Rightarrow 2$ dimensionless parameters \Rightarrow Q2: Why only γ ? The other has no ${ }^{n / m}$ role in the interplay?

Idea: One-photon process

\checkmark One-photon process is the key to answer Q1 \& Q2!

Idea: One-photon process

\checkmark One-photon process is the key to answer Q1 \& Q2!
$\boldsymbol{\checkmark}$ Larger Ω, more perturbative \Rightarrow one-photon dominates eventually

- because there is no time to interact many times, no matter how strong $e E_{0}$ is

multiple scatterings
larger $\Omega \simeq$ shorter E-field
- should cover different region, as photon \# should be huge $\frac{2 m}{\Omega} \rightarrow \infty$ in the semi-classics
- analytical formula is available (for any field config. !)

$$
N_{1 \text {-photon }}=\sum_{s, s^{\prime}} \int \mathrm{d}^{3} \boldsymbol{p} \mathrm{~d}^{3} \boldsymbol{p}^{\prime}\left|\boldsymbol{E} M{\underset{\boldsymbol{p}}{ } \boldsymbol{p}^{\prime}, s^{\prime}}_{\boldsymbol{p}, s}^{\boldsymbol{C}^{\prime}}\right|^{2}=\frac{V}{(4 \pi)^{2}} \int_{2 m}^{\infty} \mathrm{d} \omega \sqrt{1-\frac{4 m^{2}}{\omega^{2}}} \frac{1}{3}\left(2+\frac{4 m^{2}}{\omega^{2}}\right)|e \tilde{E}(\omega)|^{2}
$$

Result: Interplay b/w tunneling, multi-, one-photon

\checkmark An explicit demonstration for Sauter pulsed E-field $e E(t)=\frac{e E_{0}}{\cosh ^{2}(\Omega t)}$

- One-photon dominates for large Ω, where semi-classical methods fail,
- One-photon is more efficient than tunneling ; N is the largest at $\Omega \sim 2 m$
\checkmark Two dimensionless parameters $\gamma=\frac{m \Omega}{e E_{0}}, v \equiv \frac{e E_{0}}{\Omega^{2}}$ control the interplay

- Sauter field is solvable, which can be compared w/ Schwinger \& one-photon

$$
\begin{gathered}
\gamma \gg 1, \quad v \ll 1 \Rightarrow \text { pert. one-photon } \\
\gamma \ll 1, \quad v \gg 1 \Rightarrow \text { non-pert. tunneling } \\
\cdot v=\frac{e E_{0} / \Omega}{\Omega}=\frac{(\text { work done by E-field) }}{(\text { photon energy) }} \\
=(\# \text { of photons involved) }
\end{gathered}
$$

Message of Part I

(1) The interplay b/w non-pert. \& pert. production mechanisms is controlled by $\gamma=\frac{m \Omega}{e E}$ (Keldysh parameter) and also by $v=\frac{e E}{\Omega^{2}}$ (\# of photons involved)
(2) Semi-classical methods (e.g., worldline) are dangerous for $\gamma \gg 1$; It breaks down for $v \gtrsim 1$, where one-photon process dominates
(3) One-photon production is very efficient, compared to non-pert. tunneling

Part I:

Interplay b/w non-pert. \& pert. production mechanisms \Downarrow Part II:

Dynamically assisted Schwinger mechanism

Dynamical assistance to chirality production

Background (1/2): Dynamically assisted Schwinger mechanism

\checkmark In Part I, I discussed E-field having a single frequency mode Ω
\checkmark What if E -field is bi-frequent; superposition of slow strong + weak fast E -fields ?

Background (1/2): Dynamically assisted Schwinger mechanism

\checkmark In Part I, I discussed E-field having a single frequency mode Ω
\checkmark What if E-field is bi-frequent; superposition of slow strong + weak fast E-fields ?

- Combinatorial effects of non-pert. \& pert. mechs. \Rightarrow dynamically assisted Schwinger mech.
[Dunne, Gies, Schutzhold (2008), (2009)]
[Piazza et al (2009)] [Monin, Voloshin (2010)]

$N \sim \exp [-\# \times$ (gap height) \times (gap length) $] \Rightarrow$ Enhancement in production

Background (1/2): Dynamically assisted Schwinger mechanism

\checkmark In Part I, I discussed E-field having a single frequency mode Ω
\checkmark What if E-field is bi-frequent; superposition of slow strong + weak fast E-fields ?

- Combinatorial effects of non-pert. \& pert. mechs. \Rightarrow dynamically assisted Schwinger mech.
[Dunne, Gies, Schutzhold (2008), (2009)]
[Piazza et al (2009)] [Monin, Voloshin (2010)]

$N \sim \exp [-\# \times($ gap height $) \times$ (gap length) $] \Rightarrow$ Enhancement in production

- Typically, analyzed within semi-classical methods [Dunne, Gies, Schutzhold (2008), (2009)]
- Phenomenological importance:
ex1) laser: available E-field is still weak \Rightarrow needs enhancement to observe the Schwinger mech ex2) heavy-ion collisions: (Mini-)jets on top of glasma, Event generators (e.g., PYTHIA)

Background (2/2): Franz-Keldysh effect in cond-mat

\checkmark Apply strong slow E-field \& a photon (~ weak fast E-field) onto a semi-conductor, and measure photo-absorption rate

- photo-absorption rate $\sim \operatorname{Im}$ [1-loop action] \sim particle production rate

Experiment (w/ Si)

- Enhancement below the mass gap
\Rightarrow Looks very similar to the dynamically assisted Schwinger mechanism (?)
- Oscillation above the mass gap (Franz-Keldysh oscillation)
- Enhancement is maximized around the mass gap

What I am going to do

\checkmark Get a better understanding of the dynamical assistance by ...

- Clarifying the relation to the Franz-Keldysh effect in cond-mat
- Establishing a novel analytical method, applicable for very fast E-field
\Leftarrow Why such method needed ?
(1) Conventional semi-classical approaches are invalid for very fast E-field (result of Part I)
(2) Enhancement by pert. one-photon around $\Omega \sim 2 m$ may be important (result of Part I)
(3) Such an enhancement is observed in Franz-Keldysh effect
(4) The Franz-Keldysh oscillation occurs for very fast E-field
- Revealing novel features, e.g., behavior at large Ω, spin generation, effective mass concept, ...

What I am going to do

\checkmark Get a better understanding of the dynamical assistance by ...

- Clarifying the relation to the Franz-Keldysh effect in cond-mat
- Establishing a novel analytical method, applicable for very fast E-field
\Leftarrow Why such method needed?
(1) Conventional semi-classical approaches are invalid for very fast E-field (result of Part I)
(2) Enhancement by pert. one-photon around $\Omega \sim 2 m$ may be important (result of Part I)
(3) Such an enhancement is observed in Franz-Keldysh effect
(4) The Franz-Keldysh oscillation occurs for very fast E-field
- Revealing novel features, e.g., behavior at large Ω, spin generation, effective mass concept, ...

\checkmark Use "the perturbation theory in the Furry picture"

Goal: Evaluate $\frac{\mathrm{d}^{3} N_{s}}{\mathrm{~d} \boldsymbol{p}^{3}}=\langle\mathrm{vac}| \hat{a}_{\boldsymbol{p}, \mathrm{s}}^{\dagger} \hat{a}_{\boldsymbol{p}, s}|\mathrm{vac}\rangle$ in the presence of strong slow $E_{\mathrm{s}} \&$ weak fast ε_{f} Idea: Perturbative expansion $\hat{a}_{p, s}$ i.t.o. ε_{f}, but no expansion i.t.o. E_{s}

Perturbation theory in Furry picture (1/3)

$$
\boldsymbol{E}=\boldsymbol{E}_{\mathrm{s}}+\varepsilon_{\mathrm{f}}
$$

Perturbation theory in Furry picture (1/3)

STEP 1

$$
E=E_{\mathrm{s}}+\varepsilon_{\mathrm{f}}
$$

$$
\begin{aligned}
& {\left[i \boldsymbol{\partial}-\boldsymbol{e} \boldsymbol{A}_{\mathbf{s}}-m\right] \hat{\psi}=e_{\mathcal{c}} \boldsymbol{A}_{\mathrm{f}} \hat{\psi}} \\
& \Rightarrow \hat{\psi}(x)=\hat{\psi}^{(0)}(x)+\int_{-\infty}^{\infty} \mathrm{d} y^{4} S_{\mathrm{R}}(x, y) \boldsymbol{e}_{\mathcal{C}} \boldsymbol{A}_{\mathrm{f}}(y) \hat{\psi}^{(0)}(y)+O\left(\left|\boldsymbol{e}_{\mathcal{A}} \mathcal{A}_{\mathrm{f}}\right|^{2}\right)
\end{aligned}
$$

Here, $\hat{\psi}^{(0)}$ and S_{R} are non-perturbatively dressed by $\boldsymbol{E}_{\mathbf{s}}$ as

$$
\begin{aligned}
& {\left[i \boldsymbol{\partial}-\boldsymbol{e} \boldsymbol{A}_{\mathbf{s}}-m\right] \hat{\psi}^{(0)}=0} \\
& {\left[i \not \partial-\boldsymbol{e} \boldsymbol{A}_{\mathbf{s}}-m\right] S_{\mathrm{R}}(x, y)=\delta^{4}(x-y)}
\end{aligned}
$$

Perturbation theory in Furry picture (2/3)

Compute in/out annihilation operators $\hat{a}_{p, s}^{\text {in/out }}, \hat{b}_{p, s}^{\text {in/out }}$ from $\hat{\psi}$

$$
\binom{\hat{a}_{\boldsymbol{p}, s}^{\text {in/out }}}{\hat{b}_{-\boldsymbol{p}, s}^{\text {in/out } \dagger}} \equiv \lim _{t \rightarrow-\infty /+\infty} \int \mathrm{d}^{3} \boldsymbol{x}\binom{\left(u_{\boldsymbol{p}, s} \mathrm{e}^{-i \omega_{p} t} \mathrm{e}^{i \boldsymbol{p} \cdot \boldsymbol{x}}\right)^{\dagger}}{\left(v_{\boldsymbol{p}, s} \mathrm{e}^{+i \omega_{\boldsymbol{p}} t} \mathrm{e}^{i \boldsymbol{p} \cdot \boldsymbol{x}}\right)^{\dagger}} \hat{\psi}(x)
$$

Perturbation theory in Furry picture (2/3)

$$
\binom{\hat{a}_{\boldsymbol{p}, s}^{\text {in/out }}}{\hat{b}_{-\boldsymbol{p}, s}^{\text {in/out } \dagger}} \equiv \lim _{t \rightarrow-\infty /+\infty} \int \mathrm{d}^{3} \boldsymbol{x}\binom{\left(u_{\boldsymbol{p}, s} \mathrm{e}^{-i \omega_{p} t} \mathrm{e}^{i \boldsymbol{p} \cdot \boldsymbol{x}}\right)^{\dagger}}{\left(v_{\boldsymbol{p}, s} \mathrm{e}^{+i \omega_{\boldsymbol{p}} t} \mathrm{e}^{i \boldsymbol{p} \cdot \boldsymbol{x}}\right)^{\dagger}} \hat{\psi}(x)
$$

$\Rightarrow \hat{o}_{p, s^{\prime}}^{\text {in }} \hat{o}_{p, s}^{\text {out }}$ are inequivalent $\hat{o}_{p, s}^{\text {in }} \neq \hat{o}_{p, s}^{\text {out }}$ and related with each other by a Bogoliubov transformation

$$
\binom{\hat{a}_{\boldsymbol{p}, s}^{\text {out }}}{\hat{b}_{-\boldsymbol{p}, s}^{\text {out }}}=\sum_{s^{\prime}} \int \mathrm{d}^{3} \boldsymbol{p}^{\prime}\left(\begin{array}{cc}
\alpha_{\boldsymbol{p}, s ; \boldsymbol{p}^{\prime}, s^{\prime}} & \beta_{\boldsymbol{p}, s ; \boldsymbol{p}^{\prime}, s^{\prime}} \\
-\beta_{\boldsymbol{p}, s ; \boldsymbol{p}^{\prime}, s^{\prime}}^{*} & \alpha_{\boldsymbol{p}, s, \boldsymbol{p}^{\prime}, s^{\prime}}^{*}
\end{array}\right)\binom{\hat{a}_{\boldsymbol{p}^{\prime}, s^{\prime}}^{\mathrm{in}}}{\hat{b}_{-\boldsymbol{p}, s^{\prime}}^{\text {in }}}
$$

where, up to $1^{\text {st }}$ order in $\boldsymbol{e c}_{\mathrm{f}}$,

Here, $\pm \psi_{\boldsymbol{p}, s}^{(0) \text { in/out }}$ are sol. of Dirac eq. dressed by $\boldsymbol{e} \boldsymbol{A}_{\mathbf{s}}$ w/ different B.C.

$$
\left[i \not \partial-\boldsymbol{e} A_{s}-m\right]_{ \pm} \psi_{p, S}^{(0) \text { in/out }}=0 \quad \mathrm{~W} / \lim _{t \rightarrow-\infty /+\infty}\binom{+\psi_{p, s}^{(0) \mathrm{in} / \mathrm{out}}}{-\psi_{p, s}^{(0) \mathrm{s} / \mathrm{out}}}=\binom{u_{p, s} \mathrm{e}^{-i \omega_{p} t} \mathrm{e}^{i p \cdot x}}{v_{p, s} \mathrm{e}^{-i \omega_{p} t} \mathrm{e}^{i p \cdot x}}
$$

Perturbation theory in Furry picture (3/3)

Evaluate the in-vacuum expectation value of \# operator

$$
\left.\left.\frac{\mathrm{d}^{3} N_{e}}{\mathrm{~d} \boldsymbol{p}^{3}} \equiv\langle\mathrm{vac} ; \text { in }| a_{\boldsymbol{p}, s}^{\text {out } \dagger} a_{p, s}^{\text {out }} \right\rvert\, \text { vac; in }\right\rangle=\sum_{s^{\prime}} \int \mathrm{d}^{3} \boldsymbol{p}^{\prime}\left|\beta_{\boldsymbol{p}, s, \boldsymbol{p}^{\prime}, s^{\prime}}\right|^{2}
$$

Perturbation theory in Furry picture (3/3)

STEP 4

Evaluate the in-vacuum expectation value of \# operator

$$
\left.\left.\frac{\mathrm{d}^{3} N_{e}}{\mathrm{~d} \boldsymbol{p}^{3}} \equiv\langle\mathrm{vac} ; \text { in }| a_{\boldsymbol{p}, s}^{\text {out } \dagger} a_{\boldsymbol{p}, s}^{\text {out }} \right\rvert\, \text { vac; in }\right\rangle=\sum_{s^{\prime}} \int \mathrm{d}^{3} \boldsymbol{p}^{\prime}\left|\beta_{\boldsymbol{p}, s ; \boldsymbol{p}^{\prime}, s^{\prime}}\right|^{2}
$$

Assume $\boldsymbol{E}_{\mathbf{s}}$ is so slow that it can be approximated as a static E-field
\Rightarrow analytical sol. of Dirac eq. $\pm \psi_{p, s}^{(0) \text { in/out }}$ is known
\Rightarrow one can evaluate $\beta_{\boldsymbol{p}, s ; \boldsymbol{p}^{\prime}, s^{\prime}}$ exactly !

Perturbation theory in Furry picture (3/3)

STEP 4

Evaluate the in-vacuum expectation value of \# operator

$$
\left.\left.\frac{\mathrm{d}^{3} N_{e}}{\mathrm{~d} \boldsymbol{p}^{3}} \equiv\langle\mathrm{vac} ; \text { in }| a_{\boldsymbol{p}, s}^{\text {out } \dagger} a_{\boldsymbol{p}, s}^{\text {out }} \right\rvert\, \text { vac; in }\right\rangle=\sum_{s^{\prime}} \int \mathrm{d}^{3} \boldsymbol{p}^{\prime}\left|\beta_{\boldsymbol{p}, s ; \boldsymbol{p}^{\prime}, s^{\prime}}\right|^{2}
$$

Assume $\boldsymbol{E}_{\mathbf{s}}$ is so slow that it can be approximated as a static E-field
\Rightarrow analytical sol. of Dirac eq. $\pm \psi_{p, s}^{(0) \text { in/out }}$ is known
\Rightarrow one can evaluate $\beta_{p, s ; \boldsymbol{p}^{\prime}, s^{\prime}}$ exactly !
\checkmark Remarks

- Directly computing VEV of \# operator
\Rightarrow inclusive quantity that includes all the processes up to $1^{\text {st }}$ order in $\mathcal{\varepsilon}_{\mathrm{f}}$

$$
\begin{aligned}
& \left.\left.\langle\text { vac; in }| a_{p, s}^{\text {out }} a_{p, s}^{\text {out }} \mid \text { vac; in }\right\rangle=\sum_{X} \mid\left\langle e_{p, s} X ; \text { out }\right| \text { vac; in }\right\rangle\left.\right|^{2}
\end{aligned}
$$

- No approximation in evaluating $\beta_{\boldsymbol{p}, s, \boldsymbol{p}^{\prime}, s^{\prime}}$ within 0 -th order WKB [Torgrimsson et al (2017)]

Result (1/6): Analytical formula for parallel $E_{\mathrm{s}} \| \varepsilon_{\mathrm{f}}$

\checkmark Analytical formula for $\boldsymbol{E}=\left(0,0, E_{\mathrm{S}}+\varepsilon_{\mathrm{f}}(t)\right)$, with arbitrary time-dep.

- is applicable even for very fast ε_{f} and reproduces numerics very well (show later)

$$
\begin{aligned}
\frac{\mathrm{d}^{3} N_{e}}{\mathrm{~d} \boldsymbol{p}^{3}}= & \frac{V}{(2 \pi)^{3}} \exp \left[-\frac{\pi\left(m^{2}+\boldsymbol{p}_{\perp}^{2}\right)}{e E_{\mathrm{s}}}\right] \\
& \times\left|1+\frac{1}{2} \frac{m^{2}+\boldsymbol{p}_{\perp}^{2}}{e E_{\mathrm{s}}} \int_{0}^{\infty} d \omega \frac{\tilde{\varepsilon}_{\mathrm{f}}(\omega)}{E_{\mathrm{S}}} \exp \left[-\frac{i}{4} \frac{\omega^{2}+4 \omega p_{\|}}{e E_{\mathrm{s}}}\right]{ }_{1} F_{1}\left(1-\frac{i}{2} \frac{m^{2}+\boldsymbol{p}_{\perp}^{2}}{e E_{\mathrm{s}}} ; 2 ; \frac{i}{2} \frac{\omega^{2}}{e E_{\mathrm{s}}}\right)\right|^{2}
\end{aligned}
$$

Result (1/6): Analytical formula for parallel $E_{\mathrm{s}} \| \mathcal{E}_{\mathrm{f}}$

\checkmark Analytical formula for $\boldsymbol{E}=\left(0,0, E_{\mathrm{S}}+\varepsilon_{\mathrm{f}}(t)\right)$, with arbitrary time-dep.

- is applicable even for very fast ε_{f} and reproduces numerics very well (show later)

$$
\frac{\mathrm{d}^{3} N_{e}}{\mathrm{~d} \boldsymbol{p}^{3}}=\frac{V}{(2 \pi)^{3}} \exp \left[-\frac{\pi\left(m^{2}+\boldsymbol{p}_{\perp}^{2}\right)}{e E_{\mathrm{s}}}\right]
$$

$\times\left|1+\frac{1}{2} \frac{m^{2}+\boldsymbol{p}_{\perp}^{2}}{e E_{\mathrm{S}}} \int_{0}^{\infty} d \omega \frac{\tilde{\varepsilon}_{\mathrm{f}}(\omega)}{E_{\mathrm{s}}} \exp \left[-\frac{i}{4} \frac{\omega^{2}+4 \omega p_{\|}}{e E_{\mathrm{s}}}\right]{ }_{1} F_{1}\left(1-\frac{i}{2} \frac{m^{2}+\boldsymbol{p}_{\perp}^{2}}{e E_{\mathrm{s}}} ; 2 ; \frac{i}{2} \frac{\omega^{2}}{e E_{\mathrm{s}}}\right)\right|^{2}$

Schwinger mech. by slow E_{s}

Result (1/6): Analytical formula for parallel $E_{\mathrm{s}} \| \varepsilon_{\mathrm{f}}$

\checkmark Analytical formula for $\boldsymbol{E}=\left(0,0, E_{\mathrm{s}}+\varepsilon_{\mathrm{f}}(t)\right)$, with arbitrary time-dep.

- is applicable even for very fast ε_{f} and reproduces numerics very well (show later)

$$
\frac{\mathrm{d}^{3} N_{e}}{\mathrm{~d} \boldsymbol{p}^{3}}=\frac{V}{(2 \pi)^{3}} \exp \left[-\frac{\pi\left(m^{2}+\boldsymbol{p}_{\perp}^{2}\right)}{e E_{\mathrm{s}}}\right]
$$

$$
\times \left\lvert\, 1+\left[\left.\frac{1}{2} \frac{m^{2}+\boldsymbol{p}_{\perp}^{2}}{e E_{\mathrm{c}}} \int_{0}^{\infty} d \omega \frac{\tilde{\varepsilon}_{\mathrm{f}}(\omega)}{E_{\mathrm{c}}} \exp \left[-\frac{i}{4} \frac{\omega^{2}+4 \omega p_{\|}}{e E_{\mathrm{s}}}\right]{ }_{1} F_{1}\left(1-\frac{i}{2} \frac{m^{2}+\boldsymbol{p}_{\perp}^{2}}{e E_{\mathrm{s}}} ; 2 ; \frac{i}{2} \frac{\omega^{2}}{e E_{\mathrm{s}}}\right)\right|^{2}\right.\right.
$$

Schwinger mech. by slow $E_{\text {s }}$

Dynamical assistance by fast \mathcal{E}_{f}

- describes interplay b/w Schwinger \& one-photon process smoothly:
- Slow limit $\omega / \sqrt{e E_{\mathrm{s}}} \ll 1$: \square dominates \Rightarrow Schwinger formula

$$
\frac{\mathrm{d}^{3} N_{e}}{\mathrm{~d} \boldsymbol{p}^{3}} \sim \frac{V}{(2 \pi)^{3}} \exp \left[-\frac{\pi\left(m^{2}+\boldsymbol{p}_{\perp}^{2}\right)}{e E_{\mathrm{s}}}\right]\left|1+\frac{\pi}{2} \frac{m^{2}+\boldsymbol{p}_{\perp}^{2}}{e E_{\mathrm{s}}} \frac{\varepsilon_{\mathrm{f}}}{E_{\mathrm{s}}}\right|^{2} \sim \frac{V}{(2 \pi)^{3}} \exp \left[-\frac{\pi\left(m^{2}+\boldsymbol{p}_{\perp}^{2}\right)}{e\left(E_{\mathrm{s}}+\varepsilon_{\mathrm{f}}\right)}\right]
$$

- Fast limit $\omega / \sqrt{e E_{\mathrm{s}}} \gg 1$: \square dominates \Rightarrow one-photon process

$$
\frac{\mathrm{d}^{3} N_{e}}{\mathrm{~d} \boldsymbol{p}^{3}} \sim \frac{V}{(2 \pi)^{3}} \frac{1}{4} \frac{m^{2}+\boldsymbol{p}_{\perp}^{2}}{\omega_{\boldsymbol{p}}^{2}} \frac{\left|e \widetilde{\varepsilon}_{\mathrm{f}}\left(2 \omega_{\boldsymbol{p}}\right)\right|^{2}}{\omega_{\boldsymbol{p}}^{2}}
$$

Result (2/6): Total N \& Relation to Franz-Keldysh effect

\checkmark For an oscillating perturbation $\varepsilon_{\mathrm{f}}(t)=\varepsilon \cos (\Omega t)$ as a demonstration

Background (2/2): Franz-Keldysh effect in cond-mat

\checkmark Apply strong slow E-field \& a photon (~ weak fast E-field) onto a semi-conductor, and measure photo-absorption rate

- photo-absorption rate \sim Im[1-loop action] \sim particle production rate

- Enhancement below the mass gap
\Rightarrow Looks very similar to the dynamically assisted Schwinger mechanism (?)
- Oscillation above the mass gap (Franz-Keldysh oscillation)
- Enhancement is maximized around the mass gap

Result (2/6): Total N \& Relation to Franz-Keldysh effect

\checkmark For an oscillating perturbation $\varepsilon_{\mathrm{f}}(\boldsymbol{t})=\boldsymbol{\varepsilon} \cos (\Omega t)$ as a demonstration

\checkmark Completely the same as the Franz-Keldysh effect !

- enhancement below the mass gap
- oscillation above the mass gap
- enhancement becomes the maximum at around the mass gap
\Rightarrow dynamically assisted Schwinger mechanism = Franz-Keldysh effect

Result (3/6): Momentum dist. \& comp. w/ numerics

\checkmark Similar enhancement/oscillating behavior for the momentum dist. momentum dist.

$$
\frac{(2 \pi)^{3}}{\boldsymbol{V}} \frac{\mathbf{d}^{3} \boldsymbol{N}_{\boldsymbol{e}}}{\mathbf{d} \boldsymbol{p}^{\mathbf{3}}} \quad \text { For } m / \sqrt{e E_{\mathrm{s}}}=2.5 ; \varepsilon / E_{\mathrm{s}}=0.01
$$

- excellent agreement b/w our analytical formula and the numerics
\Rightarrow One-photon process it the essence of the dynamical assistance
- Another notable feature: the biggest peak (~ 1-photon peak) is above the gap $\Omega>2 \omega_{p}$

Result (4/6): Physical interpretation

- quantum tunneling \Rightarrow enhancement
- quantum reflection \Rightarrow oscillation
\Rightarrow production occurs most efficiently at the maxima

Result (5/6): Analytical formula for general $E_{\mathrm{s}} \nless \varepsilon_{\mathrm{f}}$

\checkmark Generalization of the analytical formula for $E_{s} \| \varepsilon_{\mathrm{f}} \rightarrow E_{\mathrm{s}} * \varepsilon_{\mathrm{f}}$

$$
\begin{aligned}
& \frac{\mathrm{d}^{3} N_{e}}{\mathrm{~d} \boldsymbol{p}^{3}}=\frac{V}{(2 \pi)^{3}} \exp \left[-\frac{\pi\left(m^{2}+\boldsymbol{p}_{\perp}^{2}\right)}{e E_{\mathrm{s}}}\right] \\
& \times\left[\left\lvert\, 1+\int_{0}^{\infty} d \omega \mathrm{e}^{-i \frac{\omega p_{\|}}{e E_{\mathrm{s}}}} \frac{1}{2} \frac{m^{2}+\boldsymbol{p}_{\perp}^{2}}{e E_{\mathrm{s}}} \frac{\widetilde{\boldsymbol{\varepsilon}}_{\mathrm{f}}(\omega) \cdot \boldsymbol{E}_{\mathrm{s}}}{E_{\mathrm{s}}^{2}} \mathrm{e}^{-i \frac{\omega^{2}}{4 e E_{\mathrm{S}_{1}}} F_{1}}\left(1-\frac{i}{2} \frac{m^{2}+\boldsymbol{p}_{\perp}^{2}}{e E_{\mathrm{s}}} ; 2 ; \frac{i}{2} \frac{\omega^{2}}{e E_{\mathrm{s}}}\right)\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\left\lvert\, \int_{0}^{\infty} d \omega \mathrm{e}^{-i \frac{\omega p_{\|}}{e E_{\mathrm{s}}}} \frac{m}{\omega} \frac{\tilde{\varepsilon}_{\mathrm{f}}^{x}(\omega)+i s \tilde{\varepsilon}_{\mathrm{f}}^{y}(\omega)}{E_{\mathrm{s}}} \operatorname{Im}\left[\left.\mathrm{e}^{-i \frac{\omega^{2}}{4 e E_{\mathrm{s}}}} F_{1}\left(1-\frac{i}{2} \frac{m^{2}+\boldsymbol{p}_{\perp}^{2}}{e E_{\mathrm{s}}} ; 1 ; \frac{i}{2} \frac{\omega^{2}}{e E_{\mathrm{s}}}\right)\right|^{2}\right]\right.
\end{aligned}
$$

- becomes complicated (green = new terms), but the basic structure is the same

Result (5/6): Analytical formula for general $E_{\mathrm{s}} \nless \varepsilon_{\mathrm{f}}$

\checkmark Generalization of the analytical formula for $E_{s} \| \varepsilon_{\mathrm{f}} \rightarrow E_{\mathrm{s}} * \varepsilon_{\mathrm{f}}$

$$
\frac{\mathrm{d}^{3} N_{e}}{\mathrm{~d} \boldsymbol{p}^{3}}=\frac{V}{(2 \pi)^{3}} \exp \left[-\frac{\pi\left(m^{2}+\boldsymbol{p}_{\perp}^{2}\right)}{e E_{\mathrm{s}}}\right]
$$

$$
\times\left[\| 1+\int_{0}^{\infty} d \omega \mathrm{e}^{-i \frac{\omega p_{\|}}{e e_{\mathrm{s}}}} \frac{1}{2} \frac{m^{2}+\boldsymbol{p}_{\perp}^{2}}{e E_{\mathrm{s}}} \frac{\widetilde{\boldsymbol{q}}_{\mathrm{f}}(\omega) \cdot \boldsymbol{E}_{\mathrm{s}}}{E_{\mathrm{s}}^{2}} \mathrm{e}^{-i \frac{\omega^{2}}{4 e E_{\mathrm{s}}}} F_{1}\left(1-\frac{i}{2} \frac{m^{2}+\boldsymbol{p}_{\perp}^{2}}{e E_{\mathrm{s}}} ; 2 ; \frac{i}{2} \frac{\omega^{2}}{e E_{\mathrm{s}}}\right)\right.
$$

Schwinger

$$
+i \int_{0}^{\infty} d \omega \mathrm{e}^{\left.\left.-i \frac{\omega \boldsymbol{p}_{\|}}{e e_{\mathrm{s}}} \frac{\widetilde{\boldsymbol{\varepsilon}}_{\mathrm{f}}(\omega) \cdot \boldsymbol{p}_{\perp}}{E_{\mathrm{s}} \omega} \operatorname{Re}\left[\mathrm{e}^{-i \frac{\omega^{2}}{4 e E_{\mathrm{s}}}} F_{1}\left(1-\frac{i}{2} \frac{m^{2}+\boldsymbol{p}_{\perp}^{2}}{e E_{\mathrm{s}}} ; 1 ; \frac{i}{2} \frac{\omega^{2}}{e E_{\mathrm{s}}}\right)\right] .\right] .\right] .}
$$

mechanism

- becomes complicated (green = new terms), but the basic structure is the same

$$
\begin{aligned}
& +\left\lvert\, \int_{0}^{\infty} d \omega \mathrm{e}^{-i \frac{\omega p_{\|}}{e E_{\mathrm{s}}}} \frac{m}{\omega} \frac{\tilde{\varepsilon}_{\mathrm{f}}^{x}(\omega)+i s \tilde{\varepsilon}_{\mathrm{f}}^{y}(\omega)}{E_{\mathrm{s}}} \operatorname{Im}\left[\left.\mathrm{e}^{-i \frac{\omega^{2}}{4 e E_{\mathrm{s}}}} F_{1}\left(1-\frac{i}{2} \frac{m^{2}+\boldsymbol{p}_{\perp}^{2}}{e E_{\mathrm{s}}} ; 1 ; \frac{i}{2} \frac{\omega^{2}}{e E_{\mathrm{s}}}\right)\right|^{2}\right]\right.
\end{aligned}
$$

Result (5/6): Analytical formula for general $E_{\mathrm{s}} \notin \varepsilon_{\mathrm{f}}$

\checkmark Generalization of the analytical formula for $E_{\mathrm{s}} \| \varepsilon_{\mathrm{f}} \rightarrow E_{\mathrm{s}} * \varepsilon_{\mathrm{f}}$

$$
\frac{\mathrm{d}^{3} N_{e}}{\mathrm{~d} \boldsymbol{p}^{3}}=\frac{V}{(2 \pi)^{3}} \exp \left[-\frac{\pi\left(m^{2}+\boldsymbol{p}_{\perp}^{2}\right)}{e E_{\mathrm{s}}}\right]
$$

- becomes complicated (green = new terms), but the basic structure is the same

Result (5/6): Analytical formula for general $E_{s} \nVdash \varepsilon_{\mathrm{f}}$

\checkmark Generalization of the analytical formula for $E_{\mathrm{s}} \| \mathcal{E}_{\mathrm{f}} \rightarrow E_{\mathrm{S}} \not \mathcal{E}_{\mathrm{f}}$

$$
\frac{\mathrm{d}^{3} N_{e}}{\mathrm{~d} \boldsymbol{p}^{3}}=\frac{V}{(2 \pi)^{3}} \exp \left[-\frac{\pi\left(m^{2}+\boldsymbol{p}_{\perp}^{2}\right)}{e E_{\mathrm{s}}}\right]
$$

- becomes complicate (σ <en = new terms), but the basic structure is the same
- spin-dependence appears even without magnetic fields [Takayoshi, Wu, Oka (2020)]
\because Dirac particle has a spin-orbit coupling $\boldsymbol{s} \cdot(\boldsymbol{p} \times \boldsymbol{E})$
[Foldy, Wouthuysen (1950)] [Tani (1951)]
- can be applied to rotating E-fields: $E=E_{0}(\cos (\Omega t), \sin (\Omega t), 0) \sim\left(E_{0}, E_{0} \Omega t, 0\right)$ Numerical studies: [Blinne, Strobel (2015)] [Strobel, Xue (2015)] [Woller, Bauke, Keitel (2015)] [Kohlfurst (2019)]

Result (6/6): Spin-dependent production

\checkmark Non-parallel superposition : $\boldsymbol{E}=\left(\begin{array}{c}\mathcal{E} \cos \theta_{\varepsilon_{\perp}} \times \cos \Omega t \\ \varepsilon \sin \theta_{\varepsilon_{\perp}} \times \cos \Omega t \\ E_{S}\end{array}\right)$
momentum dist. of spin up $\frac{1}{V} \frac{\mathrm{~d}^{3} N_{\uparrow}}{\mathrm{d} p^{3}}$
diff. b/w spin up and down $\frac{1}{V} \frac{\mathrm{~d}^{3} N_{\uparrow}}{\mathrm{d} \boldsymbol{p}^{3}}-\frac{1}{V} \frac{\mathrm{~d}^{3} N_{\downarrow}}{\mathrm{d} \boldsymbol{p}^{3}}$

- The dynamical assistance to N is basically the same as the parallel case
- Spin-dependence appears $\Rightarrow \mathrm{O}(10 \%)$ effect \Rightarrow non-negligible
- $\theta_{\boldsymbol{p}_{\perp}}$-dependent because of the spin-orbit interaction $\boldsymbol{s} \cdot(\boldsymbol{p} \times \boldsymbol{\mathcal { E }})$

Message of Part II

(1) The dynamically assisted Schwinger mechanism is an analogue of the Franz-Keldysh effect in cond-mat
(2) Perturbation theory in the Furry picture provides a very powerful analytical formula
(3) Not only the enhancement due to the quantum tunneling and one-photon assistance, but also oscillation appears due to the quantum reflection
(4) Spin-dependent production occurs when transverse E-field is time-dependent

```
    [HT, PRD (2019)]
    [Huang, HT, PRD (2019)]
[Huang, Matsuo, HT, PTEP (2019)]
```


Part I:

Interplay b/vi non-pert. \& pert. production mechanisms

Pari" IT:

Dynamically assisted Schwinger mechanism

\Downarrow Part III:

Dynamical assistance to chirality production

Background: Chirality production

\checkmark Chirality is produced through anomaly when $E \cdot B \neq 0$

Background: Chirality production

\checkmark Chirality is produced through anomaly when $E \cdot B \neq 0$

- Microscopically, caused by the interplay b/w Schwinger mech. by E-field \& Landau quantization by B-field

B-field

\Rightarrow chirality \sim helicity $=+2 \times N_{\text {pair in LLL }}$
[Nielsen, Ninomiya (1983)] [Tanji (2010)]
[Fukushima, Kharzeev, Warringa (2010)]
[Copinger, Fukushima, Pu (2018)] etc ...

- $\boldsymbol{E} \cdot \boldsymbol{B} \neq 0$ may/can be realized at: heavy-ion collisions, early Universe, Iaser, ...

Background: Chirality production

\checkmark Chirality is produced through anomaly when $E \cdot B \neq 0$

- Microscopically, caused by the interplay b/w Schwinger mech. by E-field \& Landau quantization by B-field

B-field

\Rightarrow chirality \sim helicity $=+2 \times N_{\text {pair in LLL }}$
[Nielsen, Ninomiya (1983)] [Tanji (2010)]
[Fukushima, Kharzeev, Warringa (2010)]
[Copinger, Fukushima, Pu (2018)] etc ...

- $\boldsymbol{E} \cdot \boldsymbol{B} \neq 0$ may/can be realized at: heavy-ion collisions, early Universe, Iaser, ...
\checkmark Chirality production is suppressed strongly by mass
$\because N_{\text {pair in LLL }} \propto \mathrm{e}^{-\# m^{2} / e E} \Rightarrow$ difficult to observe ...

Background: Chirality production

\checkmark Chirality is produced through anomaly when $E \cdot B \neq 0$

- Microscopically, caused by the interplay b/w Schwinger mech. by E-field \& Landau quantization by B-field

B-field

\Rightarrow chirality \sim helicity $=+2 \times N_{\text {pair in LLL }}$
[Nielsen, Ninomiya (1983)] [Tanji (2010)]
[Fukushima, Kharzeev, Warringa (2010)] [Copinger, Fukushima, Pu (2018)] etc ...

- $\boldsymbol{E} \cdot \boldsymbol{B} \neq 0$ may/can be realized at: heavy-ion collisions, early Universe, Iaser, ...
\checkmark Chirality production is suppressed strongly by mass
$\because N_{\text {pair in LLL }} \propto \mathrm{e}^{-\# m^{2} / e E} \Rightarrow$ difficult to observe ...
Q: Any way to avoid the mass suppression ? \Rightarrow A: Dynamical assistance !

Theory: Perturbation theory in the Furry picture

\checkmark Extend the E-field case (Part II) to $E \| B$ case

- Repeat essentially the same calculation, but with slight modifications:

Theory: Perturbation theory in the Furry picture

\checkmark Extend the E-field case (Part II) to $E \| B$ case

- Repeat essentially the same calculation, but with slight modifications:

SETUP: Parallel \bar{E}, \bar{B} with perturbative weak fast E -field ε

$$
\begin{aligned}
& \boldsymbol{E}(t)=\overline{\boldsymbol{E}}+\varepsilon(t) \\
& \boldsymbol{B}(t)=\overline{\boldsymbol{B}}
\end{aligned}
$$

STEP 1: Solve Dirac eq. under \bar{E}, \bar{B} non-perturbatively, and include effects of ε perturbatively

$$
\begin{aligned}
& {[i \nexists-e \bar{A}-m] \hat{\psi}=\boldsymbol{e} \mathcal{A} \mathcal{A} \hat{\psi}} \\
& \Rightarrow \hat{\psi}(x)=\hat{\psi}^{(0)}(x)+\int_{-\infty}^{\infty} \mathrm{d} y^{4} S(x, y) \boldsymbol{e}_{\mathcal{A}} \mathcal{A}(y) \hat{\psi}^{(0)}(y)+O\left(\left|\boldsymbol{e}_{\mathcal{A}}\right|^{2}\right)
\end{aligned}
$$

STEP 2: Compute VEV of chirality operator

$$
\left.Q_{5} \equiv \lim _{t \rightarrow \infty} \int \mathrm{~d} \boldsymbol{x}^{3}\langle\operatorname{vac} ; \text { in }| \hat{\bar{\psi}} \gamma^{5} \hat{\psi} \mid \text { vac; in }\right\rangle=O(1)+O\left(|\boldsymbol{e} \mathcal{A}|^{1}\right)+O\left(|\boldsymbol{e} \mathcal{A}|^{2}\right)+\cdots
$$

Result (1/2): Analytical formula

$$
\frac{Q_{5}}{V T}=\frac{e \bar{E} e \bar{B}}{2 \pi^{2}} \mathrm{e}^{-\pi \frac{m^{2}}{e \bar{E}} \times\left[1+\left(\frac{2 \pi}{T}\left(\frac{m^{2}}{e \bar{E}}\right)^{2} \int_{0}^{\infty} \mathrm{d} \omega\left|\frac{\tilde{\varepsilon}(\omega)}{\bar{E}}{ }_{1} \tilde{F}_{1}\left(1-\frac{\mathrm{i}}{2} \frac{m^{2}}{e \bar{E}} ; 2 ; \frac{\mathrm{i}}{2} \frac{\omega^{2}}{e \bar{E}}\right)\right|\right.\right.}
$$

Dynamical assistance by fast E-field \mathcal{E}

- Dynamical assistance
- is positive \Rightarrow chirality is always enhanced
- goes away when $m \rightarrow 0 \Rightarrow$ important only for massive case
- is independent of B-field
(\because B-field does not supply energy, i.e., does not affect the prod. mech.)

Result (2/2): Plot for chirality production

$$
-\frac{Q_{5}}{V T\left(e \bar{B} e \bar{E} / 2 \pi^{2}\right)} \cdots-\cdots \exp \left[-\pi m^{2} / e \bar{E}\right]
$$

\checkmark An oscillating pert. as demonstration: $\frac{e E(t)}{m^{2}}=\frac{e \bar{E}}{m^{2}}+0.001 \cos \Omega t, \frac{e B(t)}{m^{2}}=\frac{e \bar{B}}{m^{2}}$
\checkmark The same behavior as the dynamically assisted Schwinger mech.

- Free from the exponential suppression due to the enhancement
- Enhancement becomes largest around the mass gap
- Oscillation above the mass gap

Message of Part III

Chirality production can be enhanced significantly via the dynamical assistance
[HT, PRR (2020)]

Part I:

Interplay b/w non-pert. \& pert. production mechanisms
Part II:

Dynamically assisted Schwinger mechanism

J.
Part III:

Spin \& chirality production

\Downarrow
Summary

Summary

I discussed the Schwinger mechanism under time-depending E-field:

Part I: Interplay b/w non-pert. \& pert. production mechanisms

- The interplay is controlled by $\gamma \equiv \frac{m \Omega}{e E}$ (Keldysh parameter) and also by $v \equiv \frac{e E}{\Omega^{2}}$
- Semi-classical methods are invalid when $v \gtrsim 1$, where one-photon process dominates
- One-photon production is very efficient, compared to non-pert. tunneling

Part II: Dynamically assisted Schwinger mechanism

- Point out relation to Franz-Keldysh effect in cond-mat.
- Analytical analysis based on perturbation theory in the Furry picture
- Not only enhancement due to quantum tunneling \& one-photon assist, but also oscillation due to quantum reflection
- Spin-dependent production occurs when transverse E-field is time-dependent

Part III: Dynamical assistance to chirality production

- Chirality production can be enhanced significantly via the dynamical assistance

Strong EM fields in HIC

$\checkmark 3$ ways to produce (as far as I know)
(1) (ultra)peripheral

$e B \sim \frac{\alpha Z v \gamma}{r^{2}} \sim \alpha Z \gamma \times m_{\pi}^{2}$

[Deng, Huang (2012)]
(2) asymmetric

$$
\begin{aligned}
e E & \sim \frac{\alpha\left(Z_{1}-Z_{2}\right) \gamma}{r^{2}} \\
& \sim \alpha\left(Z_{1}-Z_{2}\right) \gamma \times m_{\pi}^{2}
\end{aligned}
$$

[Voronyuk, Toneev, Voloshin, Cassing (2014)]
(3) low-energy

$e E \sim \frac{\alpha Z_{\text {tot }}}{r^{2}} \sim \alpha Z_{\text {tot }} \times m_{\pi}^{2}$

[Review: Rafelski, Kirsch, Muller, Reinhardt, Greiner (2014)]

Glasma

\checkmark Gluon saturation of ultra-relativistic nuclei
\Rightarrow something like a "color capacitor"
$\mathrm{w} /$ huge color charge density $=O\left(Q_{S}\right)=O($ a few GeV$)$

[Lappi, McLerran (2006)]
\checkmark High-energy heavy-ion collisions \simeq formation of "color condenser"
\Rightarrow strong color flux tubes

