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Pair production by E-field leads to emission of photons
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v Photons may have high harmonics due to strong-field effects
Suppose E-field has a typical frequency Q: E(w) « §(Q — o)
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* E is strong/slow (small yeiaysn) = w% = (non — linear in E) = w = n X () appear

v Observation in semi-conductors (also in many other materials) 5 ol

* Key features: Odd harmonics n = 1,3,5, ... & Plateau structure

* Microscopic mechanism of solid-state HHG is still under debate

and no established analytical methods
(e.g., 3 step model of gas-HHG does not necessarily work) [Corkum (1993)]
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* Microscopic mechanism of solid-state HHG is still under debate
and no established analytical methods

(e.g., 3 step model of gas-HHG does not necessarily work)

[Corkum (1993)]
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v Natural to expect in QED, but not intensively discussed thus far

* Previous works are based on the Euler-Heisenberg effective action [Piazza, Hatsagortsyan, Keitel (2005)]

) ) o . [Fedotov, Narozhny (2007)]
= valid only in the static limit @ - 0 = Not satisfactory for Q # 0 [Bohl, Ruhl, King (2015)]




What are needed for the formulation ?

- Need to know wavefunction
" Photon spectra are given i.t.o. current, which is expressed i.t.o. wavefunctions ¥,
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- @ Need to include Stokes phenomenon of i,

" Particle prod. is the origin of HHG and is interpreted as a Stokes phenomenon of ODEs
* In Math: Stokes phenomenon ~ Sudden mixing up of positive & negative frequency solutions

Ex.) Airy function: 0 = (02 — 2)Ai(z) Im[z] %
. —223/2/3 at22%/2/3 c_#0,c, %0 <
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Any nice analytical method for ®» & 2 ? = Exact WKB'!




[Voros (1983)] Exa Ct WKB mEthOd

[Pham, Dillinger, Delabaere [Jeffery (1924)] [Wentzel (1926)] :
Aoki, Koike, Takei, . [Kramers (1926)] [Brillouin (1926)] [Ecalle (1981)]

Exact WKB = "usual” WKB + Borel resum.
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A perturbation theory w.r.t. i (or adiabatic approx.)
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0t order = plane wave
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- WKB expansion makes sense if the is convergent
- However, y, ,~n! in general (e.g. Airy function Q(¢) « t)

= WKB expansion has zero radius of convergence = ill-defined !!!




Exact WKB method
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A resummation scheme for factorially divergent ~n! series
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- ¥, is well-defined, unless B[y.] has singularities on real axis

- Asymptotic expansion of W, =
= W, is a natural analytic continuation of ¢,
= W, gives a well-defined version of the WKB solution !

- Singularities of B[y ] can be used to describe Stokes phenomenon




Exact-WKB recipe for Stokes phenomenon

Step 1: Draw a Stokes graph

- Laplace trans. of B[y+](t; ) hits singularities
(non-Borel summable) when located
on Stokes lines in the t-plane
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Step 2: Compute Borel sum ¥, at each Stokes region

* Borel sum is well-defined and computable in each region separated by Stokes lines

“d
W= | G B LG ~ e
0

. ot
Tr% dt’w/Q(t’)] X (1+ 0(h)) at each Stokes region
to
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Step 2: Compute Borel sum ¥, at each Stokes region

* Borel sum is well-defined and computable in each region separated by Stokes lines

“d
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dt Jo(t ] X (1 + 0(h)) at each Stokes region
to

Step 3: Compute the Stokes constants a« and 8

- Whenever crosses Stokes lines, W, jumps discontinuously (Stokes phenomenon)
= The discontinuity is given by the integral of singularities of B[y ]

Y, (region A) = a Y, (region B) + ,Q Y_(region B)

dn
~ 1 a-n/h .
b ngon 7€ BIBIEN)

a Stokes line




Contents

Il. Application of Exact WKB to HHG



Strong-field QED wavefunction within EWKB
_ Apply Exact WKB to Dirac eq.: 0 = [iny°9; —y - (p — eA) — m]yY(t) —

Step 1: Draw a Stokes graph

Step 2: Compute Borel sum W, at each Stokes region
Step 3: Compute the Stokes constants a and S

At the leading order in a
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Strong-field QED wavefunction within EWKB

Step 1: Draw a Stokes graph

Step 2: Compute Borel sum W, at each Stokes region
Step 3: Compute the Stokes constants a and S
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Stokes const.
= Reproduces the known semi-classical formulas for the particle prod. # at out-state

e.g., Worldline instanton method [Dunne, Schubert, ...];
Steepest descent analyses [lzykson-Zuber, Dykene-Davis-Pechuaks]
Imaginary-time method [Popov]; Divergent asymptotic series method [Berry-Dingle]
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¥_,, enables us to discuss various processes in the presence of vacuum particle prod.




HHG: Harmonic spectrum

Setup: A monochromatic E-field E(t) = E, cos(t)
What | computed:

VEV of current J(w) =F.T.[J(t)] = F.T. l<0; in|l/jy”1/3|0; in>]
using numerics and analytically with the EWKB wavefunc. ¥_,atLOin 7

dNn ~ 2
Note that w — ~ |wj(w)]
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= Plateau (cutoff) appears when the physics becomes nonperturbative (perturbative)
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* LO Exact WKB is very GOOD for the plateau, but is BAD after the cutoff
= LO approx. is GOOD for nonpert. processes but BAD for pert. processes (e.g., multi-photon)



HHG: Harmonic intensity

v Magnitude of the harmonic peak at w/Q =9

Dependence on strength E, Dependence on frequency Q
e ,analyticaIWithtlll()%E‘WKBwavefuTn(;.lP patLOin a
100%
10j / wm.uulllllll /\10_
E o MYV 1
3 ERR
= 0,100%— \ s
% 0.010- % 0‘100;'
E E
& 0.001} S o010
Lot numerics 4
00 05 1.0 15 20 25 3.0 0001y

Strength eEo/m? Inverse frequency m/Q

* In the nonpert. regime (strong E, & small Q), the harmonic intensity:
- saturates = resulting in the plateau

- oscillates = consistent with recent semi-conductor exp. xia eta/, (2020)]
(but only E,-dep. is measured and Q-dep. is our prediction)

- The saturation & oscillation are nicely captured by LO Exact WKB

Exact WKB is a nice analytical approach for nonpertubative processes

in the presence of vacuum particle production
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Summary

Problem: High-harmonic generation (HHG) from the vacuum by strong
time-dependent & spatially-homogeneous electric field

Approach: Exact WKB method

v Exact WKB is a nice analytical method to construct wavefunc. under strong
fields, including Stokes phenomenon (i.e., dynamics of vacuum particle prod.)

v Particle production from the vacuum leads to high-harmonic generation:

* Only odd harmonics are generated

* Plateau structure, whose cutoff is set by the Keldysh parameter yxeiqysh = 7:?9
0

* Saturation and oscillation in the nonperturbative regime ygeaysh < 1

v The nonperturbative features of HHG are nicely reproduced by Exact WKB

even with LO treatmentin A
= Exact WKB (or WKB) is a powerful tool to describe strong-field QED phenomena'!

cf. Antonino’s talk (w/o Stokes pheno. but w/ spatial inhomo.)

For more details: [11HT, Fujimori, Misumi, Nitta, Sakai, JHEP 03, 082 (2021) [2010.16080]

[2] HT, Hongo, Ikeda, 2105.12446






Intuitive picture

pair prod.

pair prod.

! paur prod. acceleratlot}“ y mtcrfcrc|1cc)aCCEIemtmnv.,;‘ nterference)

FIG. 1. (a) A typical Stokes graph, composed of Stokes lines
(blue lines) and turning points (red points), and (b) the cor-
responding physical processes during the real-time evolution.



Interplay b/w tunneling, multi-, one-photon

v An explicit demonstration for Sauter pulsed E-field eE(t) = 20
- Exact eEg/n-32:0.1 T T L e T
—— One-photon ‘

cosh2(Qt)

0.001 LCFA (Schwinger formula)

Semi-classics

Semi-classics with y—->oo

NIV

- One-photon dominates for large Q,

where semi-classical methods fail,

10713 1

- One-photon is more efficient

_ than tunneling ; N is the largest at Q ~ 2m
L1l L ! Lol ll T N B B | i L L1 A
0.01

o II1IOO
Qfm

v Two dimensionless parameters y =

__€eEy .
o V=@ control the interplay

Nonperturbative tunneling

« Sauter field is solvable, which can be

compared w/ Schwinger & one-photon

eFy/m*

Yy > 1, v« 1= pert. one—photon
Yy <1, v>» 1= non-pert. tunneling

Perturbative one—photon

__eEy/Q _ (workdone by E-field)
Y
Ofm i .

(photon energy)
= (# of photons involved)



Intra- and inter-band contributions

100 R R o
_— ExaCt Jobs B WKB JObS I WKB Ji[l[l'a
10 5 W B J ter
_ 1
™~ Ty
= 0.100 , |
0.010 g\ T
0.001
10_4 .....................
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FIG. 2.  HHG spectrum for the oscillating field (10), with
Q/(A)2) = 1/4, eFEo/(A)2)* =1 (i.e.,, v = 1/4) and Qti, =
—177 /3, Ty = 2|tin|. The parameter set corresponds to, e.g.,
/27 = 1THz and Eo = 4.2kV /em for a Dirac material with
Fermi velocity vp = 10° m /s and mass A = 33meV.



Analytical expression for the current

. o0 i B i ; :
L amee i vin([Zm]-1)(32-1) sing o 0 ~ W(w—=(2n-1)Q)
Tintra, ~ € R 57 [Ze []-2)( —5~ )H w—OF2n—- Q o — 1 .

. , _—in_ —+ o0
) res —i(—1)[Fa ]
Jinter ~ € i

2ol o)yt ([ HE -5 FE-D (wro (n- L
(111, +_Hin_1/2)e WlwFx2(n on Q

+ (hl (472) — ((—l)” cos — — l) Hpieo 1+ ((—l)” cos g + 1) H%ii_%) W(w—(2n — 1)(2)] : (11)
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