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・ 𝐸𝐸 is weak/fast (large 𝛾𝛾Keldysh) ⇒ 𝜔𝜔 d𝑁𝑁𝛾𝛾
d𝜔𝜔

= (linear in �𝐸𝐸) ⇒ peaked at 𝜔𝜔 = 𝟏𝟏 × Ω

・ 𝐸𝐸 is strong/slow (small 𝛾𝛾Keldysh) ⇒ 𝜔𝜔 d𝑁𝑁𝛾𝛾
d𝜔𝜔

= (non − linear in �𝐸𝐸) ⇒ 𝜔𝜔 = 𝒏𝒏 × Ω appear

Suppose E-field has a typical frequency Ω: �𝐸𝐸 𝜔𝜔 ∝ 𝛿𝛿(Ω − 𝜔𝜔)
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✔ Observation in semi-conductors (also in many other materials)

・ Microscopic mechanism of solid-state HHG is still under debate 
and no established analytical methods

・ Key features: Odd harmonics 𝑛𝑛 = 1,3,5, … & Plateau structure

Photon emission

(e.g., 3 step model of gas-HHG does not necessarily work) [Corkum (1993)]
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d𝜔𝜔

= (non − linear in �𝐸𝐸) ⇒ 𝜔𝜔 = 𝒏𝒏 × Ω appear

Suppose E-field has a typical frequency Ω: �𝐸𝐸 𝜔𝜔 ∝ 𝛿𝛿(Ω − 𝜔𝜔)

✔ Natural to expect in QED, but not intensively discussed thus far

・ Key features: Odd harmonics 𝑛𝑛 = 1,3,5, … & Plateau structure

Photon emission

(e.g., 3 step model of gas-HHG does not necessarily work) [Corkum (1993)]

[Ghimire et al., (2011)]

Pair production

・ Previous works are based on the Euler-Heisenberg effective action 
⇒ valid only in the static limit Ω → 0 ⇒ Not satisfactory for Ω ≠ 0

[Piazza, Hatsagortsyan, Keitel (2005)] 
[Fedotov, Narozhny (2007)]
[Bohl, Ruhl, King (2015)]
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① Need to know wavefunction 𝜓𝜓±

Nice way to include ① & ② ???   ⇒   Exact WKB !!!

∵  Photon spectra are given i.t.o. current, which is expressed i.t.o. wavefunctions 𝜓𝜓±

= plane waves

where

with B.C.

𝜔𝜔
d𝑁𝑁
d𝜔𝜔

∼ 𝜔𝜔𝐽𝐽 𝜔𝜔 2

�𝜓𝜓(𝑡𝑡,𝒙𝒙) = � d3𝒑𝒑
ei𝒑𝒑⋅𝒙𝒙

2𝜋𝜋 3/2 𝜓𝜓+,𝒑𝒑(𝑡𝑡) �𝑎𝑎𝒑𝒑
(in) + 𝜓𝜓−,𝒑𝒑(𝑡𝑡)�𝑏𝑏−𝒑𝒑

(in)†

𝐽𝐽 𝑡𝑡 ≔ 0; in ��𝜓𝜓𝛾𝛾𝜇𝜇 �𝜓𝜓 0; in = �
d3𝒑𝒑
2𝜋𝜋 3

�𝜓𝜓−,𝒑𝒑𝛾𝛾𝜇𝜇𝜓𝜓−,𝒑𝒑

lim
𝑡𝑡→−∞

𝜓𝜓±,𝒑𝒑 ∝ e∓i𝜔𝜔𝒑𝒑𝑡𝑡

What are needed for the formulation ?
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Any nice analytical method for ① & ② ? ⇒  Exact WKB !

�𝜓𝜓 ∼ e−i𝜔𝜔𝒑𝒑𝑡𝑡 �𝑎𝑎in + e+i𝜔𝜔𝒑𝒑𝑡𝑡 �𝑏𝑏in
† at 𝑡𝑡 ∼ −∞



Exact WKB = ”usual” WKB + Borel resum.

Exact WKB method[Voros (1983)]
[Pham, Dillinger, Delabaere, 
Aoki, Koike, Takei, …]

[Jeffery (1924)] [Wentzel (1926)]
[Kramers (1926)] [Brillouin (1926)] [Ecalle (1981)]



Exact WKB = ”usual” WKB + Borel resum.

Exact WKB method[Voros (1983)]
[Pham, Dillinger, Delabaere, 
Aoki, Koike, Takei, …]

[Jeffery (1924)] [Wentzel (1926)]
[Kramers (1926)] [Brillouin (1926)] [Ecalle (1981)]

⇒ 𝜙𝜙± 𝑡𝑡;ℏ ≔ exp ∓ i
ℏ ∫𝑡𝑡0
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0th order = plane wave 
~ exp[∓ i
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Perturbation w.r.t. ℏ

A perturbation theory w.r.t. ℏ (or adiabatic approx.)

・ Consider 0 = ℏ2𝜕𝜕𝑡𝑡2 + 𝑄𝑄 𝑡𝑡 𝜙𝜙 𝑡𝑡 ⇔ 𝜕𝜕𝜏𝜏2 + 𝑄𝑄 ℏ𝜏𝜏 𝜙𝜙 𝜏𝜏
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∞
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ℏ e−𝜂𝜂/ℏ𝐵𝐵[𝜓𝜓±](𝑡𝑡; 𝜂𝜂)

① Construct “Borel transformation”:

② Laplace trans. gives “Borel sum”: 



Exact WKB = ”usual” WKB + Borel resum.

Exact WKB method[Voros (1983)]
[Pham, Dillinger, Delabaere, 
Aoki, Koike, Takei, …]

[Jeffery (1924)] [Wentzel (1926)]
[Kramers (1926)] [Brillouin (1926)] [Ecalle (1981)]

・ Consider the div. part of WKB expansion 𝜓𝜓± 𝑡𝑡;ℏ ≔ ∑𝑛𝑛=0∞ 𝜓𝜓±,𝑛𝑛(𝑡𝑡)ℏ𝑛𝑛

A resummation scheme for factorially divergent ~n! series

𝐵𝐵 𝜓𝜓± 𝑡𝑡; 𝜂𝜂 ≔�
𝑛𝑛

∞
𝜓𝜓±,𝑛𝑛(𝑡𝑡)
𝑛𝑛! 𝜂𝜂𝑛𝑛

Ψ± 𝑡𝑡;ℏ ≔ �
0

∞d𝜂𝜂
ℏ e−𝜂𝜂/ℏ𝐵𝐵[𝜓𝜓±](𝑡𝑡; 𝜂𝜂)

① Construct “Borel transformation”:

② Laplace trans. gives “Borel sum”: 

・ Asymptotic expansion of Ψ± = 𝜓𝜓±

⇒ Ψ± is a natural analytic continuation of 𝜓𝜓±

⇒ 𝚿𝚿± gives a well-defined version of the WKB solution !

・ Ψ± is well-defined, unless 𝐵𝐵 𝜓𝜓± has singularities on real axis 

・ Singularities of 𝑩𝑩 𝝍𝝍± can be used to describe Stokes phenomenon 



Exact-WKB recipe for Stokes phenomenon
Step 1: Draw a Stokes graph

● : turning  points  

一 : Stokes lines  

𝑄𝑄 𝑡𝑡tp = 0

𝑡𝑡 ∈ ℂ 0 = Im i�
𝑡𝑡tp

𝑡𝑡
d𝑧𝑧 𝑄𝑄 𝑧𝑧 }

・ Laplace trans. of 𝐵𝐵 𝜓𝜓± (𝑡𝑡; 𝜂𝜂) hits singularities 
(non-Borel summable) when located 
on Stokes lines in the t-plane
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Exact-WKB recipe for Stokes phenomenon
Step 1: Draw a Stokes graph

Ψ+ region 𝐴𝐴 = 𝛼𝛼 Ψ+ region 𝐵𝐵 + 𝛽𝛽 Ψ− region 𝐵𝐵

・ Whenever crosses Stokes lines, Ψ± jumps discontinuously (Stokes phenomenon) 
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HHG: Harmonic spectrum

VEV of current 
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strong & slow 𝛾𝛾Keldysh = 1/4weak & fast 𝛾𝛾Keldysh ≔
𝑚𝑚Ω
𝑒𝑒𝐸𝐸0

= 100

2𝜋𝜋
𝛾𝛾Keldysh

2𝜋𝜋
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・ Odd high-harmonic peaks appear as decreasing 𝜸𝜸𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊
⇒ Plateau (cutoff) appears when the physics becomes nonperturbative (perturbative)
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weak & fast 𝛾𝛾Keldysh ≔
𝑚𝑚Ω
𝑒𝑒𝐸𝐸0

= 100

・ LO Exact WKB is very GOOD for the plateau, but is BAD after the cutoff 
⇒ LO approx. is GOOD for nonpert. processes but BAD for pert. processes (e.g., multi-photon)



HHG: Harmonic intensity
✔ Magnitude of the harmonic peak at 𝝎𝝎/𝛀𝛀 = 𝟗𝟗

numerics

Dependence on frequency ΩDependence on strength 𝐸𝐸0

analytical with the EWKB wavefunc. Ψ−,𝒑𝒑 at LO in ℏ

2𝜋𝜋
𝛾𝛾Keldysh

2𝜋𝜋
𝛾𝛾Keldysh

・ In the nonpert. regime (strong 𝑬𝑬𝟎𝟎 & small 𝛀𝛀), the harmonic intensity: 
- saturates ⇒ resulting in the plateau

[Xia et al., (2020)] 

・ The saturation & oscillation are nicely captured by LO Exact WKB

Exact WKB is a nice analytical approach for nonpertubative processes 

in the presence of vacuum particle production

- oscillates ⇒ consistent with recent semi-conductor exp.
(but only 𝐸𝐸0-dep. is measured and Ω-dep. is our prediction)
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Summary

✔ Exact WKB is a nice analytical method to construct wavefunc. under strong 
fields, including Stokes phenomenon (i.e., dynamics of vacuum particle prod.)

✔ Particle production from the vacuum leads to high-harmonic generation:

Problem:

Approach: Exact WKB method

cf. Antonino’s talk (w/o Stokes pheno. but w/ spatial inhomo.)

High-harmonic generation (HHG) from the vacuum by strong 
time-dependent & spatially-homogeneous electric field

・ Only odd harmonics are generated
・ Plateau structure, whose cutoff is set by the Keldysh parameter 𝛾𝛾Keldysh = 𝑚𝑚Ω

𝑒𝑒𝐸𝐸0
・ Saturation and oscillation in the nonperturbative regime 𝛾𝛾Keldysh < 1~

✔ The nonperturbative features of HHG are nicely reproduced by Exact WKB 
even with LO treatment in ℏ
⇒ Exact WKB (or WKB) is a powerful tool to describe strong-field QED phenomena !

For more details: [1] HT, Fujimori, Misumi, Nitta, Sakai, JHEP 03, 082 (2021) [2010.16080] 

[2] HT, Hongo, Ikeda, 2105.12446
(Note that [2] is written for cond-mat., 
but the basic idea/calculation is the same for strong-field QED)





Intuitive picture



・ One-photon dominates for large 𝛀𝛀, 

where semi-classical methods fail, 

・ One-photon is more efficient

than tunneling ; 𝑁𝑁 is the largest at Ω ∼ 2𝑚𝑚

𝛾𝛾 ≫ 1, 𝜈𝜈𝜈𝜈 ≪ 1 ⇒ pert. one−photon

・ Sauter field is solvable, which can be 
compared w/ Schwinger & one-photon

Interplay b/w tunneling, multi-, one-photon

𝛾𝛾 > 1 𝜈𝜈 < 1

✔ An explicit demonstration for Sauter pulsed E-field 𝒆𝒆𝑬𝑬 𝒕𝒕 = 𝒆𝒆𝑬𝑬𝟎𝟎
𝐜𝐜𝐜𝐜𝐊𝐊𝐊𝐊𝟐𝟐(𝛀𝛀𝒕𝒕)

・ 𝜈𝜈 = 𝑒𝑒𝐸𝐸0/Ω
Ω

=

𝛾𝛾 ≪ 1, 𝜈𝜈𝜈𝜈 ≫ 1 ⇒ non−pert. tunneling

(work done by E-field)

(photon energy)
= (# of photons involved)

✔ Two dimensionless parameters 𝜸𝜸 = 𝒎𝒎𝛀𝛀
𝒆𝒆𝑬𝑬𝟎𝟎

, 𝝂𝝂 ≡ 𝒆𝒆𝑬𝑬𝟎𝟎
𝛀𝛀𝟐𝟐

control the interplay



Intra- and inter-band contributions



Analytical expression for the current
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