Application of the exact WKB method to particle production and high-harmonics generation (HHG) from the vacuum

Hidetoshi TAYA (RIKEN)

[1] <u>HT</u>, Fujimori, Misumi, Nitta, Sakai, JHEP 03, 082 (2021) [2010.16080] [2] <u>HT</u>, Hongo, Ikeda, 2105.12446

✓ Photons may have high harmonics due to strong-field effects

Suppose E-field has a typical frequency Ω : $\tilde{E}(\omega) \propto \delta(\Omega - \omega)$

- *E* is weak/fast (large γ_{Keldysh}) $\Rightarrow \omega \frac{dN_{\gamma}}{d\omega} = (\text{linear in } \tilde{E}) \Rightarrow \text{peaked at } \omega = \mathbf{1} \times \Omega$
- *E* is strong/slow (small γ_{Keldysh}) $\Rightarrow \omega \frac{dN_{\gamma}}{d\omega} = (\text{non} \text{linear in } \tilde{E}) \Rightarrow \omega = \mathbf{n} \times \Omega$ appear

✓ Photons may have high harmonics due to strong-field effects

Suppose E-field has a typical frequency Ω : $\tilde{E}(\omega) \propto \delta(\Omega - \omega)$

- *E* is weak/fast (large γ_{Keldysh}) $\Rightarrow \omega \frac{dN_{\gamma}}{d\omega} = (\text{linear in } \tilde{E}) \Rightarrow \text{peaked at } \omega = \mathbf{1} \times \Omega$
- *E* is strong/slow (small γ_{Keldysh}) $\Rightarrow \omega \frac{dN_{\gamma}}{d\omega} = (\text{non} \text{linear in } \tilde{E}) \Rightarrow \omega = \mathbf{n} \times \Omega$ appear

✓ Observation in semi-conductors (also in many other materials)

- Key features: Odd harmonics $n = 1,3,5, \dots$ & Plateau structure
- Microscopic mechanism of solid-state HHG is still under debate and no established analytical methods (e.g., 3 step model of gas-HHG does not necessarily work) [Corkum (1993)]

✓ Photons may have high harmonics due to strong-field effects

Suppose E-field has a typical frequency Ω : $\tilde{E}(\omega) \propto \delta(\Omega - \omega)$

- *E* is weak/fast (large γ_{Keldysh}) $\Rightarrow \omega \frac{dN_{\gamma}}{d\omega} = (\text{linear in } \tilde{E}) \Rightarrow \text{peaked at } \omega = \mathbf{1} \times \Omega$
- *E* is strong/slow (small γ_{Keldysh}) $\Rightarrow \omega \frac{dN_{\gamma}}{d\omega} = (\text{non} \text{linear in } \tilde{E}) \Rightarrow \omega = \mathbf{n} \times \Omega$ appear

✓ Observation in semi-conductors (also in many other materials)

- Key features: Odd harmonics $n = 1,3,5, \dots$ & Plateau structure
- Microscopic mechanism of solid-state HHG is still under debate and no established analytical methods (e.g., 3 step model of gas-HHG does not necessarily work) [Corkum (1993)]

✓ Natural to expect in QED, but not intensively discussed thus far

• Previous works are based on the Euler-Heisenberg effective action \Rightarrow valid only in the static limit $\Omega \rightarrow 0 \Rightarrow$ Not satisfactory for $\Omega \neq 0$

[Piazza, Hatsagortsyan, Keitel (2005)] [Fedotov, Narozhny (2007)] [Bohl, Ruhl, King (2015)]

What are needed for the formulation?

1 Need to know wavefunction ψ_{\pm}

 \therefore Photon spectra are given i.t.o. current, which is expressed i.t.o. wavefunctions ψ_{\pm}

$$\omega \frac{\mathrm{d}N}{\mathrm{d}\omega} \sim \left|\omega \tilde{J}(\omega)\right|^2 \quad \text{where} \quad J(t) \coloneqq \left\langle 0; \operatorname{in} \left| \hat{\psi} \gamma^{\mu} \hat{\psi} \right| 0; \operatorname{in} \right\rangle = \int \frac{\mathrm{d}^3 \boldsymbol{p}}{(2\pi)^3} \bar{\psi}_{-,\boldsymbol{p}} \gamma^{\mu} \psi_{-,\boldsymbol{p}}$$

 $\hat{\psi}(t,x) = \int d^3 p \frac{\mathrm{e}^{\mathrm{i} p \cdot x}}{(2\pi)^{3/2}} \Big[\psi_{+,p}(t) \hat{a}_p^{(\mathrm{in})} + \psi_{-,p}(t) \hat{b}_{-p}^{(\mathrm{in})\dagger} \Big] \quad \text{with B.C.} \quad \lim_{t \to -\infty} \psi_{\pm,p} \propto \mathrm{e}^{\pm \mathrm{i} \omega_p t} = \text{plane waves}$

What are needed for the formulation?

1 Need to know wavefunction ψ_{\pm}

 \because Photon spectra are given i.t.o. current, which is expressed i.t.o. wavefunctions ψ_\pm

$$\omega \frac{\mathrm{d}N}{\mathrm{d}\omega} \sim \left|\omega \tilde{J}(\omega)\right|^2 \quad \text{where} \quad J(t) \coloneqq \left\langle 0; \operatorname{in} \left| \hat{\bar{\psi}} \gamma^{\mu} \hat{\psi} \right| 0; \operatorname{in} \right\rangle = \int \frac{\mathrm{d}^3 \boldsymbol{p}}{(2\pi)^3} \bar{\psi}_{-,\boldsymbol{p}} \gamma^{\mu} \psi_{-,\boldsymbol{p}}$$

 $\hat{\psi}(t,x) = \int d^3 p \frac{\mathrm{e}^{\mathrm{i} p \cdot x}}{(2\pi)^{3/2}} \Big[\psi_{+,p}(t) \hat{a}_p^{(\mathrm{in})} + \psi_{-,p}(t) \hat{b}_{-p}^{(\mathrm{in})\dagger} \Big] \quad \text{with B.C.} \quad \lim_{t \to -\infty} \psi_{\pm,p} \propto \mathrm{e}^{\pm \mathrm{i} \omega_p t} = \text{plane waves}$

② Need to include Stokes phenomenon of ψ_\pm

- \because Particle prod. is the origin of HHG and is interpreted as a Stokes phenomenon of ODEs
- In Math: Stokes phenomenon ~ Sudden mixing up of positive & negative frequency solutions Ex.) Airy function: $0 = (\partial_z^2 - z)Ai(z)$ $\Rightarrow Ai(z) \sim c_- \frac{e^{-2z^{3/2}/3}}{z^{1/4}} + c_+ \frac{e^{+2z^{3/2}/3}}{z^{1/4}}$ • In Phys: The mixing means production of particles from the vacuum $\hat{\psi} \sim e^{-i\omega_p t} \hat{a}_{in} + e^{+i\omega_p t} \hat{b}_{in}^{\dagger}$ at $t \sim -\infty$ $\Rightarrow \hat{\psi} \sim (\alpha e^{-i\omega_p t} + \beta e^{+i\omega_p t}) \hat{a}_{in} + (\alpha^* e^{+i\omega_p t} + \beta^* e^{-i\omega_p t}) \hat{b}_{in}^{\dagger}$ whenever Stokes pheno. $= e^{-i\omega_p t} (\alpha \hat{a}_{in} + \beta^* \hat{b}_{in}^{\dagger}) + e^{+i\omega_p t} (\beta \hat{a}_{in} + \alpha^* \hat{b}_{in}^{\dagger})$

$$\hat{a}_{t} \qquad \hat{b}_{t}^{\mathsf{T}}$$
$$\Rightarrow \langle 0; \operatorname{in} | \hat{a}_{t}^{\dagger} \hat{a}_{t} | 0; \operatorname{in} \rangle = \langle 0; \operatorname{in} | \hat{b}_{t}^{\dagger} \hat{b}_{t} | 0; \operatorname{in} \rangle = |\beta|^{2} \neq 0$$

What are needed for the formulation?

1 Need to know wavefunction ψ_{\pm}

 \because Photon spectra are given i.t.o. current, which is expressed i.t.o. wavefunctions ψ_\pm

$$\omega \frac{\mathrm{d}N}{\mathrm{d}\omega} \sim \left|\omega \tilde{J}(\omega)\right|^2 \quad \text{where} \quad J(t) \coloneqq \left\langle 0; \operatorname{in} \left| \hat{\bar{\psi}} \gamma^{\mu} \hat{\psi} \right| 0; \operatorname{in} \right\rangle = \int \frac{\mathrm{d}^3 \boldsymbol{p}}{(2\pi)^3} \bar{\psi}_{-,\boldsymbol{p}} \gamma^{\mu} \psi_{-,\boldsymbol{p}}$$

 $\hat{\psi}(t, \mathbf{x}) = \int d^3 \mathbf{p} \frac{\mathrm{e}^{\mathrm{i}\mathbf{p}\cdot\mathbf{x}}}{(2\pi)^{3/2}} \Big[\psi_{+,\mathbf{p}}(t)\hat{a}_{\mathbf{p}}^{(\mathrm{in})} + \psi_{-,\mathbf{p}}(t)\hat{b}_{-\mathbf{p}}^{(\mathrm{in})\dagger} \Big] \quad \text{with B.C. } \lim_{t \to -\infty} \psi_{\pm,\mathbf{p}} \propto \mathrm{e}^{\mp \mathrm{i}\omega_{\mathbf{p}}t} = \text{plane waves}$

② Need to include Stokes phenomenon of ψ_\pm

- \therefore Particle prod. is the origin of HHG and is interpreted as a Stokes phenomenon of ODEs
- In Math: Stokes phenomenon ~ Sudden mixing up of positive & negative frequency solutions Ex.) Airy function: $0 = (\partial_z^2 - z)Ai(z)$ $e^{-2z^{3/2}/3}$ $e^{+2z^{3/2}/3}$ $e^{+2z^{3/2}/3}$

$$\Rightarrow \operatorname{Ai}(z) \sim c_{-} \frac{e^{-2z^{3/2}/3}}{z^{1/4}} + c_{+} \frac{e^{+2z^{3/2}/3}}{z^{1/4}}$$

• In Phys: The mixing means production of particles from the vacuum

$$\begin{split} \hat{\psi} &\sim e^{-i\omega_{p}t} \, \hat{a}_{in} + e^{+i\omega_{p}t} \, \hat{b}_{in}^{\dagger} \text{ at } t \sim -\infty \\ \Rightarrow \, \hat{\psi} &\sim (\alpha e^{-i\omega_{p}t} + \beta e^{+i\omega_{p}t}) \hat{a}_{in} + (\alpha^{*} e^{+i\omega_{p}t} + \beta^{*} e^{-i\omega_{p}t}) \hat{b}_{in}^{\dagger} \quad \text{whene} \\ &= e^{-i\omega_{p}t} (\alpha \hat{a}_{in} + \beta^{*} \hat{b}_{in}^{\dagger}) + e^{+i\omega_{p}t} (\beta \hat{a}_{in} + \alpha^{*} \hat{b}_{in}^{\dagger}) \\ & \hat{a}_{t} \qquad \hat{b}_{t}^{\dagger} \end{split}$$

 $\Rightarrow \langle 0; \operatorname{in} | \hat{a}_t^{\dagger} \hat{a}_t | 0; \operatorname{in} \rangle = \langle 0; \operatorname{in} | \hat{b}_t^{\dagger} \hat{b}_t | 0; \operatorname{in} \rangle = |\beta|^2 \neq 0$

whenever Stokes pheno. occur at $t \neq -\infty$

 $c_{-} \neq 0, c_{+} = 0$

Any nice analytical method for $1 \& 2 ? \Rightarrow Exact WKB !$

Exact WKB method

[Voros (1983)] [Pham, Dillinger, Delabaere, Aoki, Koike, Takei, ...]

[Jeffery (1924)] [Wentzel (1926)] [Kramers (1926)] [Brillouin (1926)]

[Ecalle (1981)]

Exact WKB = "usual" WKB + Borel resum.

- WKB expansion makes sense if the perturbative part is convergent
- However, $\psi_{\pm,n} \sim n!$ in general (e.g., Airy function $Q(t) \propto t$)

 \Rightarrow WKB expansion has zero radius of convergence \Rightarrow ill-defined !!!

Exact WKB method

[Voros (1983)] [Pham, Dillinger, Delabaere, Aoki, Koike, Takei, ...]

[Jeffery (1924)] [Wentzel (1926)] [Kramers (1926)] [Brillouin (1926)]

[Ecalle (1981)]

Exact WKB = "usual" WKB + Borel resum.

A resummation scheme for factorially divergent ~n! series

• Consider the div. part of WKB expansion $\psi_{\pm}(t;\hbar) \coloneqq \sum_{n=0}^{\infty} \psi_{\pm,n}(t)\hbar^n$

① Construct "Borel transformation": $B[\psi_{\pm}](t;\eta) \coloneqq \sum_{n=1}^{\infty} \frac{\psi_{\pm,n}(t)}{n!} \eta^n$

(2) Laplace trans. gives "Borel sum": $\Psi_{\pm}(t;\hbar) \coloneqq \int_{0}^{\infty} \frac{\mathrm{d}\eta}{\hbar} e^{-\eta/\hbar} B[\psi_{\pm}](t;\eta)$

Exact WKB method

[Voros (1983)] [Pham, Dillinger, Delabaere, Aoki, Koike, Takei, ...]

[Jeffery (1924)] [Wentzel (1926)] [Kramers (1926)] [Brillouin (1926)]

[Ecalle (1981)]

Exact WKB = "usual" WKB + Borel resum.

A resummation scheme for factorially divergent ~n! series

• Consider the div. part of WKB expansion $\psi_+(t;\hbar) \coloneqq \sum_{n=0}^{\infty} \psi_{\pm,n}(t)\hbar^n$

① Construct "Borel transformation": $B[\psi_{\pm}](t;\eta) \coloneqq \sum_{n=1}^{\infty} \frac{\psi_{\pm,n}(t)}{n!} \eta^n$

(2) Laplace trans. gives "Borel sum": $\Psi_{\pm}(t;\hbar) \coloneqq \int_{0}^{\infty} \frac{d\eta}{\hbar} e^{-\eta/\hbar} B[\psi_{\pm}](t;\eta)$

- Ψ_+ is well-defined, unless $B[\psi_+]$ has singularities on real axis
- Asymptotic expansion of $\Psi_+ = \psi_+$ $\Rightarrow \Psi_+$ is a natural analytic continuation of ψ_+

 $\Rightarrow \Psi_+$ gives a well-defined version of the WKB solution !

• Singularities of $B[\psi_+]$ can be used to describe Stokes phenomenon

Exact-WKB recipe for Stokes phenomenon

Exact-WKB recipe for Stokes phenomenon

<u>Step 2</u>: Compute Borel sum Ψ_+ at each Stokes region

• Borel sum is well-defined and computable in each region separated by Stokes lines

$$\Psi_{\pm} = \int_0^\infty \frac{\mathrm{d}\eta}{\hbar} \,\mathrm{e}^{-\eta/\hbar} B[\psi_{\pm}](t;\eta) \sim \exp\left[\mp \frac{\mathrm{i}}{\hbar} \int_{t_0}^t \mathrm{d}t' \sqrt{Q(t')}\right] \times (1+O(\hbar)) \,\,\mathrm{at} \,\,\mathrm{each} \,\,\mathrm{Stokes} \,\,\mathrm{region}$$

Exact-WKB recipe for Stokes phenomenon

<u>Step 2</u>: Compute Borel sum Ψ_{\pm} at each Stokes region

• Borel sum is well-defined and computable in each region separated by Stokes lines

$$\Psi_{\pm} = \int_{0}^{\infty} \frac{\mathrm{d}\eta}{\hbar} \,\mathrm{e}^{-\eta/\hbar} B[\psi_{\pm}](t;\eta) \sim \exp\left[\mp \frac{\mathrm{i}}{\hbar} \int_{t_{0}}^{t} \mathrm{d}t' \sqrt{Q(t')}\right] \times (1+O(\hbar)) \,\,\mathrm{at} \,\,\mathrm{each} \,\,\mathrm{Stokes} \,\,\mathrm{region}$$

<u>Step 3</u>: Compute the Stokes constants α and β

• Whenever crosses Stokes lines, Ψ_{\pm} jumps discontinuously (**Stokes phenomenon**) \Rightarrow The discontinuity is given by the integral of singularities of $B[\psi_{\pm}]$ $\Psi_{+}(\text{region } A) = \alpha \Psi_{+}(\text{region } B) + \beta \Psi_{-}(\text{region } B) - \sqrt{\frac{d\eta}{\hbar}} e^{-\eta/\hbar} B[\psi_{\pm}](t;\eta)$

a Stokes lin

I. Introduction to HHG & Exact WKB

II. Application of Exact WKB to HHG

III. Summary

Apply Exact WKB to Dirac eq.: $0 = [i\hbar\gamma^0\partial_t - \gamma \cdot (p - eA) - m]\psi(t)$

<u>Step 1</u>: Draw a Stokes graph **<u>Step 2</u>**: Compute Borel sum Ψ_{\pm} at each Stokes region **<u>Step 3</u>**: Compute the Stokes constants α and β

At the leading order in \hbar

Apply Exact WKB to Dirac eq.: $0 = [i\hbar\gamma^0\partial_t - \gamma \cdot (p - eA) - m]\psi(t)$

<u>Step 1</u>: Draw a Stokes graph <u>**Step 2**</u>: Compute Borel sum Ψ_{\pm} at each Stokes region <u>**Step 3**</u>: Compute the Stokes constants α and β

$$\Psi_{-,p}(t) = \left[v_{p-eA} e^{+i \int^{t} \omega_{p-eA}} - \sum_{n} \Theta(t - t_{n}^{cr})(-1)^{n} e^{-\frac{\sigma_{n}}{\hbar}} u_{p-eA} e^{-i \int^{t} \omega_{p-eA}} \right] \left(1 + O(\hbar) + O(e^{-\frac{2}{\hbar} \operatorname{Re} \sigma}) \right)$$
where $t_{n}^{cr} = \{t \in \mathbb{R} \mid 0 = \operatorname{Im} i \int_{t_{n}^{tp}}^{t} \omega_{p-eA} \}$ is the crossing b/w *n*-th Stokes line and the real axis
 $\sigma_{n} = -2i \int_{0}^{t_{n}^{tp}} dt \, \omega_{p-eA}$ is the "instanton" action associated to *n*-th Stokes line

Apply Exact WKB to Dirac eq.: $0 = [i\hbar\gamma^0\partial_t - \gamma \cdot (p - eA) - m]\psi(t)$

<u>Step 1</u>: Draw a Stokes graph **<u>Step 2</u>**: Compute Borel sum Ψ_{\pm} at each Stokes region **<u>Step 3</u>**: Compute the Stokes constants α and β

Negative plane wave (0th WKB sol.)

Apply Exact WKB to Dirac eq.: $0 = [i\hbar\gamma^0\partial_t - \gamma \cdot (p - eA) - m]\psi(t)$

<u>Step 1</u>: Draw a Stokes graph **<u>Step 2</u>**: Compute Borel sum Ψ_{\pm} at each Stokes region **<u>Step 3</u>**: Compute the Stokes constants α and β

⇒ Reproduces the known semi-classical formulas for the particle prod. # at out-state

e.g., Worldline instanton method [Dunne, Schubert, ...]; Steepest descent analyses [Izykson-Zuber, Dykene-Davis-Pechuaks] Imaginary-time method [Popov]; Divergent asymptotic series method [Berry-Dingle]

Apply Exact WKB to Dirac eq.: $0 = [i\hbar\gamma^0\partial_t - \gamma \cdot (p - eA) - m]\psi(t)$

<u>Step 1</u>: Draw a Stokes graph **<u>Step 2</u>**: Compute Borel sum Ψ_{\pm} at each Stokes region **<u>Step 3</u>**: Compute the Stokes constants α and β

⇒ Reproduces the known semi-classical formulas for the particle prod. # at out-state

e.g., Worldline instanton method [Dunne, Schubert, ...]; Steepest descent analyses [Izykson-Zuber, Dykene-Davis-Pechuaks] Imaginary-time method [Popov]; Divergent asymptotic series method [Berry-Dingle]

$\Psi_{-,p}$ enables us to discuss various processes in the presence of vacuum particle prod.

HHG: Harmonic spectrum

<u>Setup</u>: A monochromatic E-field $E(t) = E_0 \cos(\Omega t)$ <u>What I computed</u>:

Note that $\omega \frac{dN}{d\omega} \sim \left|\omega \tilde{J}(\omega)\right|^2$

VEV of current $\tilde{J}(\omega) = F.T.[J(t)] = F.T.\left[\langle 0; in | \hat{\psi} \gamma^{\mu} \hat{\psi} | 0; in \rangle\right]$

using **numerics** and **analytically with the EWKB wavefunc.** $\Psi_{-,p}$ at LO in \hbar

HHG: Harmonic spectrum

• Odd high-harmonic peaks appear as decreasing γ_{Keldysh}

Durrent $|\omega \tilde{J}|$

 \Rightarrow Plateau (cutoff) appears when the physics becomes nonperturbative (perturbative)

HHG: Harmonic spectrum

• Odd high-harmonic peaks appear as decreasing $\gamma_{Keldysh}$

 \Rightarrow Plateau (cutoff) appears when the physics becomes nonperturbative (perturbative)

\cdot LO Exact WKB is very GOOD for the plateau, but is BAD after the cutoff

 \Rightarrow LO approx. is GOOD for nonpert. processes but BAD for pert. processes (e.g., multi-photon)

HHG: Harmonic intensity

✓ Magnitude of the harmonic peak at $\omega/\Omega = 9$

- In the nonpert. regime (strong E_0 & small Ω), the harmonic intensity:
 - saturates \Rightarrow resulting in the plateau
 - oscillates \Rightarrow consistent with recent semi-conductor exp. [Xia *et al.*, (2020)] (but only E_0 -dep. is measured and Ω -dep. is our prediction)

The saturation & oscillation are nicely captured by LO Exact WKB

Exact WKB is a nice analytical approach for nonpertubative processes in the presence of vacuum particle production

I. Introduction to HHG & Exact WKB

II. Application of Exact WKB to HHG

III.Summary

Problem: High-harmonic generation (HHG) from the vacuum by strong time-dependent & spatially-homogeneous electric field
 Approach: Exact WKB method

- Exact WKB is a nice analytical method to construct wavefunc. under strong fields, including Stokes phenomenon (i.e., dynamics of vacuum particle prod.)
- ✓ Particle production from the vacuum leads to high-harmonic generation:
 - Only odd harmonics are generated
 - Plateau structure, whose cutoff is set by the Keldysh parameter $\gamma_{\text{Keldysh}} = \frac{m\Omega}{eE_0}$
 - Saturation and oscillation in the nonperturbative regime $\gamma_{\rm Keldysh} \lesssim 1$
- ✓ The nonperturbative features of HHG are nicely reproduced by Exact WKB even with LO treatment in \hbar
 - ⇒ Exact WKB (or WKB) is a powerful tool to describe strong-field QED phenomena !

cf. Antonino's talk (w/o Stokes pheno. but w/ spatial inhomo.)

For more details: [1] HT, Fujimori, Misumi, Nitta, Sakai, JHEP 03, 082 (2021) [2010.16080]

[2] <u>HT</u>, Hongo, Ikeda, 2105.12446

(Note that [2] is written for cond-mat., but the basic idea/calculation is the same for strong-field QED)

Intuitive picture

FIG. 1. (a) A typical Stokes graph, composed of Stokes lines (blue lines) and turning points (red points), and (b) the corresponding physical processes during the real-time evolution.

Interplay b/w tunneling, multi-, one-photon

✓ An explicit demonstration for Sauter pulsed E-field $eE(t) = \frac{eE_0}{\cosh^2(\Omega t)}$

• One-photon dominates for large Ω ,

where semi-classical methods fail,

One-photon is more efficient

than tunneling ; N is the largest at $\Omega \sim 2m$

✓ Two dimensionless parameters $\gamma = \frac{m\Omega}{eE_0}$, $\nu \equiv \frac{eE_0}{\Omega^2}$ control the interplay

 Sauter field is solvable, which can be compared w/ Schwinger & one-photon

 $\gamma \gg 1$, $\nu \ll 1 \Rightarrow$ pert. one-photon

 $\gamma \ll 1$, $\nu \gg 1 \Rightarrow$ non-pert. tunneling

• $\nu = \frac{eE_0/\Omega}{\Omega} = \frac{\text{(work done by E-field)}}{\text{(photon energy)}}$ = (# of photons involved)

Intra- and inter-band contributions

FIG. 2. HHG spectrum for the oscillating field (10), with $\Omega/(\Delta/2) = 1/4$, $eE_0/(\Delta/2)^2 = 1$ (i.e., $\gamma = 1/4$) and $\Omega t_{\rm in} = -17\pi/3$, $T_w = 2|t_{\rm in}|$. The parameter set corresponds to, e.g., $\Omega/2\pi = 1$ THz and $E_0 = 4.2$ kV/cm for a Dirac material with Fermi velocity $v_{\rm F} = 10^6$ m/s and mass $\Delta = 33$ meV.

Analytical expression for the current

$$\begin{split} \tilde{J}_{\text{intra}} &\sim e^{-\frac{2\operatorname{Re}\sigma}{\hbar}} \frac{-\mathrm{i}}{\pi\cos^{2}\frac{\theta}{2}} \sum_{n=-\infty}^{\infty} \left[\sum_{\pm} e^{+\mathrm{i}\pi \left(\left\lceil \frac{t_{\text{in}}}{\pi/\Omega} \right\rceil - \frac{1}{2} \right) \left(\mp \frac{\theta}{\pi} - 1 \right)} \frac{\sin\frac{\theta}{2}}{4\left(n - \frac{\theta}{2\pi}\right)} \tilde{W} \left(\omega - \Omega \mp 2\left(n - \frac{\theta}{2\pi}\right) \Omega \right) - \frac{\tilde{W} \left(\omega - (2n - 1)\Omega \right)}{2n - 1} \right] \\ \tilde{J}_{\text{inter}} &\sim e^{-\frac{\operatorname{Re}\sigma}{\hbar}} \frac{-\mathrm{i}(-1)^{\left\lceil \frac{t_{\text{in}}}{\pi/\Omega} \right\rceil} \gamma}{4\pi\cos\frac{\theta}{2}} \sum_{n=-\infty}^{+\infty} \sum_{\pm} \left[\left(\ln\gamma^{2} + 2H_{\pm n - 1/2} \right) e^{+\mathrm{i}\pi \left(\left\lceil \frac{t_{\text{in}}}{\pi/\Omega} \right\rceil - \frac{1}{2} \right) \left(\mp \frac{\theta}{\pi} - 1 \right)} \tilde{W} \left(\omega \mp 2\left(n - \frac{\theta}{2\pi}\right) \Omega \right) \right] \\ &+ \left(\ln\left(4\gamma^{2}\right) - \left((-1)^{n}\cos\frac{\theta}{2} - 1 \right) H_{\frac{n}{2} \pm \frac{\theta}{4\pi} - 1} + \left((-1)^{n}\cos\frac{\theta}{2} + 1 \right) H_{\frac{n}{2} \pm \frac{\theta}{4\pi} - \frac{1}{2}} \right) \tilde{W} \left(\omega - (2n - 1)\Omega \right) \right], \tag{11}$$