Application of the exact WKB method to particle production
 and high-harmonics generation (HHG) from the vacuum

Hidetoshi TAYA (RIKEN)

[1] HT, Fujimori, Misumi, Nitta, Sakai, JHEP 03, 082 (2021) [2010.16080]
[2] HT, Hongo, Ikeda, 2105.12446

Pair production by E-field leads to emission of photons

Problem: HHG from the vacuum

Pair production by E-field leads to emission of photons

\checkmark Photons may have high harmonics due to strong-field effects
Suppose E-field has a typical frequency $\Omega: \tilde{E}(\omega) \propto \delta(\Omega-\omega)$
$\cdot E$ is weak/fast (large $\left.\gamma_{\text {Keldysh }}\right) \Rightarrow \omega \frac{\mathrm{d} N_{\gamma}}{\mathrm{d} \omega}=($ linear in $\tilde{E}) \Rightarrow$ peaked at $\omega=\mathbf{1} \times \Omega$

- E is strong/slow (small $\left.\gamma_{\text {Keldysh }}\right) \Rightarrow \omega \frac{\mathrm{d} N_{\gamma}}{\mathrm{d} \omega}=($ non - linear in $\tilde{E}) \Rightarrow \omega=n \times \Omega$ appear

Problem: HHG from the vacuum

Pair production by E-field leads to emission of photons

Vacuum

\checkmark Photons may have high harmonics due to strong-field effects
Suppose E-field has a typical frequency $\Omega: \tilde{E}(\omega) \propto \delta(\Omega-\omega)$

- E is weak/fast (large $\left.\gamma_{\text {Keldysh }}\right) \Rightarrow \omega \frac{\mathrm{d} \nu_{\gamma}}{\mathrm{d} \omega}=($ linear in $\tilde{E}) \Rightarrow$ peaked at $\omega=\mathbf{1} \times \Omega$
- E is strong/slow $\left(\right.$ small $\left.\gamma_{\text {Keldysh }}\right) \Rightarrow \omega \frac{\mathrm{d} N_{\gamma}}{\mathrm{d} \omega}=($ non - linear in $\tilde{E}) \Rightarrow \omega=\boldsymbol{n} \times \Omega$ appear
\checkmark Observation in semi-conductors (also in many other materials)
- Key features: Odd harmonics $n=1,3,5, \ldots$ \& Plateau structure
- Microscopic mechanism of solid-state HHG is still under debate and no established analytical methods
(e.g., 3 step model of gas-HHG does not necessarily work) [Corkum (1993)]
[Ghimire et al., (2011)]

Problem: HHG from the vacuum

Pair production by E-field leads to emission of photons

Vacuum

\checkmark Photons may have high harmonics due to strong-field effects
Suppose E-field has a typical frequency Ω : $\tilde{E}(\omega) \propto \delta(\Omega-\omega)$
$\cdot E$ is weak/fast (large $\left.\gamma_{\text {Keldysh }}\right) \Rightarrow \omega \frac{\mathrm{d} N_{\gamma}}{\mathrm{d} \omega}=($ linear in $\tilde{E}) \Rightarrow$ peaked at $\omega=\mathbf{1} \times \Omega$

- E is strong/slow (small $\left.\gamma_{\text {Keldysh }}\right) \Rightarrow \omega \frac{\mathrm{d} \nu_{\gamma}}{\mathrm{d} \omega}=($ non - linear in $\tilde{E}) \Rightarrow \omega=n \times \Omega$ appear
\checkmark Observation in semi-conductors (also in many other materials)
- Key features: Odd harmonics $n=1,3,5, \ldots$ \& Plateau structure
- Microscopic mechanism of solid-state HHG is still under debate and no established analytical methods (e.g., 3 step model of gas-HHG does not necessarily work) [Corkum (1993)]

\checkmark Natural to expect in QED, but not intensively discussed thus far
- Previous works are based on the Euler-Heisenberg effective action \Rightarrow valid only in the static limit $\Omega \rightarrow 0 \Rightarrow$ Not satisfactory for $\Omega \neq 0$
[Piazza, Hatsagortsyan, Keitel (2005)]

What are needed for the formulation?

(1) Need to know wavefunction $\psi_{ \pm}$

\because Photon spectra are given i.t.o. current, which is expressed i.t.o. wavefunctions $\psi_{ \pm}$

$$
\left.\omega \frac{\mathrm{d} N}{\mathrm{~d} \omega} \sim|\omega \tilde{J}(\omega)|^{2} \quad \text { where } \quad J(t):=\langle 0 ; \text { in }| \hat{\bar{\psi}} \gamma^{\mu} \hat{\psi} \mid 0 ; \text { in }\right\rangle=\int \frac{\mathrm{d}^{3} \boldsymbol{p}}{(2 \pi)^{3}} \bar{\psi}_{-, \boldsymbol{p}} \gamma^{\mu} \psi_{-, \boldsymbol{p}}
$$

$$
\hat{\psi}(t, x)=\int \mathrm{d}^{3} p \frac{\mathrm{e}^{\mathrm{i} p \cdot x}}{(2 \pi)^{3 / 2}}\left[\psi_{+, p}(t) \hat{a}_{p}^{(\mathrm{in})}+\psi_{-p}(t) \hat{b}_{-p}^{(\mathrm{in})+}\right] \quad \text { with B.C. } \quad \lim _{t \rightarrow-\infty} \psi_{ \pm, p} \propto \mathrm{e}^{\mathrm{Fi} \omega_{p} t}=\text { plane waves }
$$

What are needed for the formulation?

(1) Need to know wavefunction $\psi_{ \pm}$
\because Photon spectra are given i.t.o. current, which is expressed i.t.o. wavefunctions $\psi_{ \pm}$

$$
\begin{aligned}
& \left.\omega \frac{\mathrm{d} N}{\mathrm{~d} \omega} \sim|\omega \tilde{J}(\omega)|^{2} \quad \text { where } \quad J(t):=\langle 0 ; \text { in }| \hat{\psi} \gamma^{\mu} \hat{\psi} \mid 0 ; \text { in }\right\rangle=\int \frac{\mathrm{d}^{3} \boldsymbol{p}}{(2 \pi)^{3}} \bar{\psi}_{-, p} \gamma^{\mu} \psi_{-, \boldsymbol{p}} \\
& \hat{\psi}(t, x)=\int \mathrm{d}^{3} p \frac{\mathrm{e}^{\mathrm{ip} \cdot \boldsymbol{x}}}{(2 \pi)^{3 / 2}}\left[\psi_{+, p}(t) \hat{a}_{p}^{(\mathrm{in})}+\psi_{-, p}(t) \hat{b}_{-p}^{(\mathrm{in})+}\right] \quad \text { with B.C. } \quad \lim _{t \rightarrow-\infty} \psi_{ \pm, p} \propto \mathrm{e}^{\mp \mathrm{Fi} \omega_{p} t}=\text { plane waves }
\end{aligned}
$$

(2) Need to include Stokes phenomenon of $\psi_{ \pm}$

\because Particle prod. is the origin of HHG and is interpreted as a Stokes phenomenon of ODEs

- In Math: Stokes phenomenon ~ Sudden mixing up of positive \& negative frequency solutions

$$
\begin{array}{ll}
\text { Ex.) Airy function: } & 0=\left(\partial_{z}^{2}-z\right) \operatorname{Ai}(z) \\
& \Rightarrow \operatorname{Ai}(z) \sim c_{-} \frac{\mathrm{e}^{-2 z^{3 / 2} / 3}}{z^{1 / 4}}+c_{+} \frac{\mathrm{e}^{+2 z^{3 / 2} / 3}}{z^{1 / 4}}
\end{array}
$$

- In Phys: The mixing means production of particles from the vacuum

$$
\begin{aligned}
& \hat{\psi} \sim \mathrm{e}^{-\mathrm{i} \omega_{p} t} \hat{a}_{\mathrm{in}}+\mathrm{e}^{+\mathrm{i} \omega_{p} t} \hat{b}_{\text {in }}^{\dagger} \text { at } t \sim-\infty \\
& \begin{aligned}
& \Rightarrow \hat{\psi} \sim\left(\alpha \mathrm{e}^{-\mathrm{i} \omega_{p} t}+\beta \mathrm{e}^{+\mathrm{i} \omega_{p} t}\right) \hat{a}_{\mathrm{in}}+\left(\alpha^{*} \mathrm{e}^{+\mathrm{i} \omega_{p} t}+\beta^{*} \mathrm{e}^{-\mathrm{i} \omega_{p} t}\right) \hat{b}_{\mathrm{in}}^{\dagger} \\
& \quad=\mathrm{e}^{-\mathrm{i} \omega_{p} t} \underbrace{\left(\alpha \hat{a}_{\mathrm{in}}+\beta^{*} \hat{b}_{\mathrm{in}}^{\dagger}\right)}_{\hat{a}_{t}}+\mathrm{e}^{+\mathrm{i} \omega_{p} t} \underbrace{\left(\beta \hat{a}_{\mathrm{in}}+\alpha^{*} \hat{b}_{\mathrm{in}}^{\dagger}\right)}_{\hat{b}_{t}^{\dagger}}
\end{aligned} \\
& \left.\left.\Rightarrow\langle 0 ; \text { in }| \hat{a}_{t}^{\dagger} \hat{a}_{t} \mid 0 ; \text { in }\right\rangle=\langle 0 ; \text { in }| \hat{b}_{t}^{\dagger} \hat{b}_{t} \mid 0 ; \text { in }\right\rangle=|\beta|^{2} \neq 0
\end{aligned}
$$

whenever Stokes pheno.
occur at $t \neq-\infty$

What are needed for the formulation?

(1) Need to know wavefunction $\psi_{ \pm}$
\because Photon spectra are given i.t.o. current, which is expressed i.t.o. wavefunctions $\psi_{ \pm}$

$$
\left.\omega \frac{\mathrm{d} N}{\mathrm{~d} \omega} \sim|\omega \tilde{J}(\omega)|^{2} \quad \text { where } \quad J(t):=\langle 0 ; \text { in }| \hat{\bar{\psi}} \gamma^{\mu} \hat{\psi} \mid 0 ; \text { in }\right\rangle=\int \frac{\mathrm{d}^{3} \boldsymbol{p}}{(2 \pi)^{3}} \bar{\psi}_{-, \boldsymbol{p}} \gamma^{\mu} \psi_{-, \boldsymbol{p}}
$$

$$
\left.\hat{\psi}(t, x)=\int \mathrm{d}^{3} \boldsymbol{p} \frac{\mathrm{e}^{p} \cdot \boldsymbol{p}}{(2 \pi)^{3 / 2}}\left[\psi_{+, p}(t)\right)_{p}^{(\text {in })}+\psi_{-p}(t) \hat{\delta}_{-p}^{(\mathrm{in})+}\right] \quad \text { with B.C. } \lim _{t \rightarrow-\infty} \psi_{ \pm, p} \propto \mathrm{e}^{\mp \mathrm{i} \omega_{p} t}=\text { plane waves }
$$

(2) Need to include Stokes phenomenon of $\psi_{ \pm}$

\because Particle prod. is the origin of HHG and is interpreted as a Stokes phenomenon of ODEs

- In Math: Stokes phenomenon ~ Sudden mixing up of positive \& negative frequency solutions

$$
\text { Ex.) Airy function: } \begin{aligned}
& 0=\left(\partial_{z}^{2}-z\right) \operatorname{Ai}(z) \\
& \Rightarrow \mathrm{Ai}(\mathrm{z}) \sim c_{-} \frac{\mathrm{e}^{-2 z^{3 / 2} / 3}}{z^{1 / 4}}+c_{+} \frac{\mathrm{e}^{+2 z^{3 / 2} / 3}}{z^{1 / 4}}
\end{aligned}
$$

- In Phys: The mixing means production of particles from the vacuum

$$
\begin{aligned}
& \hat{\psi} \sim \mathrm{e}^{-\mathrm{i} \omega_{p} t} \hat{a}_{\text {in }}+\mathrm{e}^{+\mathrm{i} \omega_{p} t} \hat{b}_{\text {in }}^{\dagger} \text { at } t \sim-\infty \\
& \Rightarrow \vec{\psi} \sim\left(\alpha \mathrm{e}^{-\mathrm{i} \omega_{p} t}+\beta \mathrm{e}^{+\mathrm{i} \omega_{p} t}\right) \hat{a}_{\text {in }}+\left(\alpha^{*} \mathrm{e}^{+\mathrm{i} \omega_{p} t}+\beta^{*} \mathrm{e}^{-\mathrm{i} \omega_{p} t}\right) \hat{b}_{\text {in }}^{\dagger} \\
& \quad=\mathrm{e}^{-\mathrm{i} \omega_{p} t} \underbrace{\left(\alpha \hat{a}_{\text {in }}+\beta^{*} \hat{b}_{\text {in }}^{\dagger}\right)}_{\hat{a}_{t}}+\mathrm{e}^{+\mathrm{i} \omega_{p} t} \underbrace{\left(\beta \hat{a}_{\text {in }}+\alpha^{*} \hat{b}_{\text {in }}^{\dagger}\right)}_{\hat{b}_{t}^{+}} \\
& \left.\left.\Rightarrow\langle 0 ; \text { in }| \hat{a}_{t}^{\dagger} \hat{a}_{t} \mid 0 ; \text { in }\right\rangle=\langle 0 ; \text { in }| \hat{b}_{t}^{\dagger} \hat{b}_{t} \mid 0 ; \text { in }\right\rangle=|\beta|^{2} \neq 0
\end{aligned}
$$

whenever Stokes pheno.
occur at $t \neq-\infty$

Any nice analytical method for (1) \& (2) ? \Rightarrow Exact WKB !
[Voros (1983)]
[Pham, Dillinger, Delabaere, Aoki, Koike, Takei, ...]

Exact WKB method

[Jeffery (1924)] [Wentzel (1926)]
[Kramers (1926)] [Brillouin (1926)]

Exact WKB = "usual" WKB + Borel resum.

A perturbation theory w.r.t. \hbar (or adiabatic approx.)

- Consider $0=\left[\hbar^{2} \partial_{t}^{2}+Q(t)\right] \phi(t) \stackrel{t \equiv \hbar \tau}{\Leftrightarrow}\left[\partial_{\tau}^{2}+Q(\hbar \tau)\right] \phi(\tau)$

$$
\Rightarrow \phi_{ \pm}(t ; \hbar):=\exp \left[\mp \frac{\mathrm{i}}{\hbar} \int_{t_{0}}^{t} \mathrm{~d} t^{\prime} \sqrt{Q\left(t^{\prime}\right)}\right] \times \sum_{n=0}^{\infty} \psi_{ \pm, n}(t) \hbar^{n}
$$

$0^{\text {th }}$ order $=$ plane wave
Perturbation w.r.t. \hbar

$$
\sim \exp \left[\mp \frac{i}{\hbar} \sqrt{Q} t\right]
$$

Exact WKB method

Exact WKB = "usual" WKB + Borel resum.

A perturbation theory w.r.t. \hbar (or adiabatic approx.)

- Consider $0=\left[\hbar^{2} \partial_{t}^{2}+Q(t)\right] \phi(t) \stackrel{t \equiv \hbar \tau}{\Leftrightarrow}\left[\partial_{\tau}^{2}+Q(\hbar \tau)\right] \phi(\tau)$

$$
\Rightarrow \phi_{ \pm}(t ; \hbar):=\exp \left[\mp \frac{\mathrm{i}}{\hbar} \int_{t_{0}}^{t} \mathrm{~d} t^{\prime} \sqrt{Q\left(t^{\prime}\right)}\right] \times \sum_{n=0}^{\infty} \psi_{ \pm, n}(t) \hbar^{n}
$$

$0^{\text {th }}$ order $=$ plane wave
Perturbation w.r.t. \hbar

$$
\sim \exp \left[\mp \frac{i}{\hbar} \sqrt{Q} t\right]
$$

- WKB expansion makes sense if the perturbative part is convergent
- However, $\psi_{ \pm, n} \sim n$! in general (e.g., Airy function $Q(t) \propto t$) \Rightarrow WKB expansion has zero radius of convergence \Rightarrow ill-defined !!!

Exact WKB method

Exact WKB = "usual" WKB + Borel resum.

A resummation scheme for factorially divergent $\sim n$! series

- Consider the div. part of WKB expansion $\psi_{ \pm}(t ; \hbar):=\sum_{n=0}^{\infty} \psi_{ \pm, n}(t) \hbar^{n}$
(1) Construct "Borel transformation": $\quad B\left[\psi_{ \pm}\right](t ; \eta):=\sum_{n}^{\infty} \frac{\psi_{ \pm, n}(t)}{n!} \eta^{n}$
(2) Laplace trans. gives "Borel sum": $\quad \Psi_{ \pm}(t ; \hbar):=\int_{0}^{\infty} \frac{\mathrm{d} \eta}{\hbar} \mathrm{e}^{-\eta / \hbar} B\left[\psi_{ \pm}\right](t ; \eta)$

Exact WKB method

Exact WKB = "usual" WKB + Borel resum.

A resummation scheme for factorially divergent $\sim n!$ series

- Consider the div. part of WKB expansion $\psi_{ \pm}(t ; \hbar):=\sum_{n=0}^{\infty} \psi_{ \pm, n}(t) \hbar^{n}$
(1) Construct "Borel transformation": $B\left[\psi_{ \pm}\right](t ; \eta):=\sum_{n}^{\infty} \frac{\psi_{ \pm, n}(t)}{n!} \eta^{n}$
(2) Laplace trans. gives "Borel sum": $\quad \Psi_{ \pm}(t ; \hbar):=\int_{0}^{\infty} \frac{\mathrm{d} \eta}{\hbar} \mathrm{e}^{-\eta / \hbar} B\left[\psi_{ \pm}\right](t ; \eta)$
- $\Psi_{ \pm}$is well-defined, unless $B\left[\psi_{ \pm}\right]$has singularities on real axis
- Asymptotic expansion of $\Psi_{ \pm}=\psi_{ \pm}$
$\Rightarrow \Psi_{ \pm}$is a natural analytic continuation of $\psi_{ \pm}$
$\Rightarrow \Psi_{ \pm}$gives a well-defined version of the WKB solution!
- Singularities of $B\left[\psi_{ \pm}\right]$can be used to describe Stokes phenomenon

Exact-WKB recipe for Stokes phenomenon

Step 1: Draw a Stokes graph

- Laplace trans. of $B\left[\psi_{ \pm}\right](t ; \eta)$ hits singularities (non-Borel summable) when located on Stokes lines in the t-plane
- : Stokes lines

$$
\left\{t \in \mathbb{C} \mid 0=\operatorname{Im~i} \int_{t_{\mathrm{tp}}}^{t} \mathrm{~d} z \sqrt{Q(z)}\right\}
$$

- :turning points

$$
Q\left(t_{\mathrm{tp}}\right)=0
$$

Exact-WKB recipe for Stokes phenomenon

Step 1: Draw a Stokes graph

- Laplace trans. of $B\left[\psi_{ \pm}\right](t ; \eta)$ hits singularities (non-Borel summable) when located on Stokes lines in the t-plane
- : Stokes lines

$$
\left\{t \in \mathbb{C} \mid 0=\operatorname{Im~i} \int_{t_{\mathrm{tp}}}^{t} \mathrm{~d} z \sqrt{Q(z)}\right\}
$$

- :turning points

$$
Q\left(t_{\mathrm{tp}}\right)=0
$$

Step 2: Compute Borel sum $\Psi_{ \pm}$at each Stokes region

- Borel sum is well-defined and computable in each region separated by Stokes lines

$$
\Psi_{ \pm}=\int_{0}^{\infty} \frac{\mathrm{d} \eta}{\hbar} \mathrm{e}^{-\eta / \hbar} B\left[\psi_{ \pm}\right](t ; \eta) \sim \exp \left[\mp \frac{\mathrm{i}}{\hbar} \int_{t_{0}}^{t} \mathrm{~d} t^{\prime} \sqrt{Q\left(t^{\prime}\right)}\right] \times(1+O(\hbar)) \text { at each Stokes region }
$$

Exact-WKB recipe for Stokes phenomenon

Step 1: Draw a Stokes graph

- Laplace trans. of $B\left[\psi_{ \pm}\right](t ; \eta)$ hits singularities (non-Borel summable) when located on Stokes lines in the t-plane
- : Stokes lines

$$
\left\{t \in \mathbb{C} \mid 0=\operatorname{Im~i} \int_{t_{\mathrm{tp}}}^{t} \mathrm{~d} z \sqrt{Q(z)}\right\}
$$

O:turning points

$$
Q\left(t_{\mathrm{tp}}\right)=0
$$

Step 2: Compute Borel sum $\Psi_{ \pm}$at each Stokes region

- Borel sum is well-defined and computable in each region separated by Stokes lines

$$
\Psi_{ \pm}=\int_{0}^{\infty} \frac{\mathrm{d} \eta}{\hbar} \mathrm{e}^{-\eta / \hbar} B\left[\psi_{ \pm}\right](t ; \eta) \sim \exp \left[\mp \frac{\mathrm{i}}{\hbar} \int_{t_{0}}^{t} \mathrm{~d} t^{\prime} \sqrt{Q\left(t^{\prime}\right)}\right] \times(1+O(\hbar)) \text { at each Stokes region }
$$

Step 3: Compute the Stokes constants α and β

- Whenever crosses Stokes lines, $\Psi_{ \pm}$jumps discontinuously (Stokes phenomenon) \Rightarrow The discontinuity is given by the integral of singularities of $B\left[\psi_{ \pm}\right]$

$$
\Psi_{+}(\text {region } A)=\underset{4}{\alpha} \Psi_{+}(\text {region } B)+\beta_{4} \Psi_{-}(\text {region } B)
$$

Contents

I. Introduction to HHG \& Exact WKB

II. Application of Exact WKB to HHG

Strong-field QED wavefunction within EWKB

Apply Exact WKB to Dirac eq.: $0=\left[i \hbar \gamma^{0} \partial_{t}-\boldsymbol{\gamma} \cdot(\boldsymbol{p}-e \boldsymbol{A})-m\right] \psi(t)$
Step 1: Draw a Stokes graph
Step 2: Compute Borel sum $\Psi_{ \pm}$at each Stokes region
Step 3: Compute the Stokes constants α and β
\square At the leading order in \hbar

Strong-field QED wavefunction within EWKB

Apply Exact WKB to Dirac eq.: $0=\left[i \hbar \gamma^{0} \partial_{t}-\boldsymbol{\gamma} \cdot(\boldsymbol{p}-e \boldsymbol{A})-m\right] \psi(t)$
Step 1: Draw a Stokes graph
Step 2: Compute Borel sum $\Psi_{ \pm}$at each Stokes region
Step 3: Compute the Stokes constants α and β

$$
\Psi_{-, \boldsymbol{p}}(t)=\left[v_{p-e A} \mathrm{e}^{\mathrm{+i} \delta^{t} \omega_{p-e A}}-\sum_{n} \Theta\left(t-t_{n}^{\mathrm{cr}}\right)(-1)^{n} \mathrm{e}^{-\frac{\sigma_{n}}{\hbar}} u_{\boldsymbol{p}-e \boldsymbol{A}} \mathrm{e}^{-\mathrm{i} \int^{t} \omega_{p-e A}}\right]\left(1+O(\hbar)+O\left(\mathrm{e}^{-\frac{2}{\hbar} \operatorname{Re} \sigma}\right)\right)
$$

where $t_{n}^{\mathrm{cr}}=\left\{t \in \mathbb{R} \mid 0=\operatorname{Imi} \int_{t_{n}^{\operatorname{tp}}}^{t} \omega_{p-e A}\right\}$ is the crossing b/w n-th Stokes line and the real axis

$$
\sigma_{n}=-2 \mathrm{i} \int_{0}^{t_{n}^{\text {tp }}} \mathrm{d} t \omega_{p-e A} \text { is the "instanton" action associated to } n \text {-th Stokes line }
$$

Strong-field QED wavefunction within EWKB

Apply Exact WKB to Dirac eq.: $0=\left[i \hbar \gamma^{0} \partial_{t}-\boldsymbol{\gamma} \cdot(\boldsymbol{p}-e \boldsymbol{A})-m\right] \psi(t)$
Step 1: Draw a Stokes graph
Step 2: Compute Borel sum $\Psi_{ \pm}$at each Stokes region
Step 3: Compute the Stokes constants α and β

Negative plane wave
($0^{\text {th }}$ WKB sol.)

Strong-field QED wavefunction within EWKB

Apply Exact WKB to Dirac eq.: $0=\left[i \hbar \gamma^{0} \partial_{t}-\boldsymbol{\gamma} \cdot(\boldsymbol{p}-e \boldsymbol{A})-m\right] \psi(t)$
Step 1: Draw a Stokes graph
Step 2: Compute Borel sum $\Psi_{ \pm}$at each Stokes region
Step 3: Compute the Stokes constants α and β

\Rightarrow Reproduces the known semi-classical formulas for the particle prod. \# at out-state
e.g., Worldline instanton method [Dunne, Schubert, ...];

Steepest descent analyses [Izykson-Zuber, Dykene-Davis-Pechuaks]
Imaginary-time method [Popov]; Divergent asymptotic series method [Berry-Dingle]

Strong-field QED wavefunction within EWKB

Apply Exact WKB to Dirac eq.: $0=\left[i \hbar \gamma^{0} \partial_{t}-\boldsymbol{\gamma} \cdot(\boldsymbol{p}-e \boldsymbol{A})-m\right] \psi(t)$
Step 1: Draw a Stokes graph
Step 2: Compute Borel sum $\Psi_{ \pm}$at each Stokes region
Step 3: Compute the Stokes constants α and β

\Rightarrow Reproduces the known semi-classical formulas for the particle prod. \# at out-state e.g., Worldline instanton method [Dunne, Schubert, ...];

Steepest descent analyses [Izykson-Zuber, Dykene-Davis-Pechuaks]
Imaginary-time method [Popov]; Divergent asymptotic series method [Berry-Dingle]

HHG: Harmonic spectrum

Setup: A monochromatic E-field $E(t)=E_{0} \cos (\Omega t)$ What I computed:

Note that $\omega \frac{\mathrm{d} N}{\mathrm{~d} \omega} \sim|\omega \tilde{J}(\omega)|^{2}$
VEV of current $\tilde{J}(\omega)=$ F.T. $[J(t)]=$ F.T. $\left[\langle 0\right.$; in $| \hat{\bar{\psi}} \gamma^{\mu} \hat{\psi} \mid 0 ;$ in $\left.\rangle\right]$
using numerics and analytically with the EWKB wavefunc. $\Psi_{-, p}$ at LO in \hbar

HHG: Harmonic spectrum

Setup: A monochromatic E-field $E(t)=E_{0} \cos (\Omega t)$ What I computed:

$$
\text { Note that } \omega \frac{\mathrm{d} N}{\mathrm{~d} \omega} \sim|\omega \tilde{J}(\omega)|^{2}
$$

VEV of current $\tilde{J}(\omega)=$ F.T. $[J(t)]=$ F.T. $\left[\langle 0\right.$; in $| \hat{\bar{\psi}} \gamma^{\mu} \hat{\psi} \mid 0 ;$ in $\left.\rangle\right]$
using numerics and analytically with the EWKB wavefunc. $\Psi_{-, p}$ at LO in \hbar

- Odd high-harmonic peaks appear as decreasing $\gamma_{\text {Keldysh }}$
\Rightarrow Plateau (cutoff) appears when the physics becomes nonperturbative (perturbative)

HHG: Harmonic spectrum

Setup: A monochromatic E-field $E(t)=E_{0} \cos (\Omega t)$ What I computed:

Note that $\omega \frac{\mathrm{d} N}{\mathrm{~d} \omega} \sim|\omega \tilde{J}(\omega)|^{2}$
VEV of current $\tilde{J}(\omega)=$ F.T. $[J(t)]=$ F. T. $\left[\langle 0\right.$; in $| \hat{\bar{\psi}} \gamma^{\mu} \hat{\psi} \mid 0 ;$ in $\left.\rangle\right]$
using numerics and analytically with the EWKB wavefunc. $\Psi_{-, p}$ at LO in \hbar

- Odd high-harmonic peaks appear as decreasing $\gamma_{\text {Keldysh }}$
\Rightarrow Plateau (cutoff) appears when the physics becomes nonperturbative (perturbative)
- LO Exact WKB is very GOOD for the plateau, but is BAD after the cutoff
\Rightarrow LO approx. is GOOD for nonpert. processes but BAD for pert. processes (e.g., multi-photon)

HHG: Harmonic intensity

\checkmark Magnitude of the harmonic peak at $\omega / \Omega=9$

- In the nonpert. regime (strong $E_{0} \&$ small Ω), the harmonic intensity:
- saturates \Rightarrow resulting in the plateau
- oscillates \Rightarrow consistent with recent semi-conductor exp. [Xia etal, (2020)] (but only E_{0}-dep. is measured and Ω-dep. is our prediction)
- The saturation \& oscillation are nicely captured by LO Exact WKB

Exact WKB is a nice analytical approach for nonpertubative processes in the presence of vacuum particle production

Contents

I. Introduction to HHG \& Exact WKB

II. Application of Exact WKB to HHG

III.Summary

Summary

Problem: High-harmonic generation (HHG) from the vacuum by strong time-dependent \& spatially-homogeneous electric field
Approach: Exact WKB method
\checkmark Exact WKB is a nice analytical method to construct wavefunc. under strong fields, including Stokes phenomenon (i.e., dynamics of vacuum particle prod.)
\checkmark Particle production from the vacuum leads to high-harmonic generation:

- Only odd harmonics are generated
- Plateau structure, whose cutoff is set by the Keldysh parameter $\gamma_{\text {Keldysh }}=\frac{m \Omega}{e E_{0}}$
- Saturation and oscillation in the nonperturbative regime $\gamma_{\text {Keldysh }} \lesssim 1$
\checkmark The nonperturbative features of HHG are nicely reproduced by Exact WKB even with LO treatment in \hbar
\Rightarrow Exact WKB (or WKB) is a powerful tool to describe strong-field QED phenomena!
cf. Antonino's talk (w/o Stokes pheno. but w/ spatial inhomo.)
For more details:
[1] HT, Fujimori, Misumi, Nitta, Sakai, JHEP 03, 082 (2021) [2010.16080]
[2] HT, Hongo, Ikeda, 2105.12446
(Note that [2] is written for cond-mat.,
but the basic idea/calculation is the same for strong-field QED)

Intuitive picture

(a)

FIG. 1. (a) A typical Stokes graph, composed of Stokes lines (blue lines) and turning points (red points), and (b) the corresponding physical processes during the real-time evolution.

Interplay b/w tunneling, multi-, one-photon

\checkmark An explicit demonstration for Sauter pulsed E-field $e E(t)=\frac{e E_{0}}{\cosh ^{2}(\Omega t)}$

- One-photon dominates for large Ω, where semi-classical methods fail,
- One-photon is more efficient than tunneling ; N is the largest at $\Omega \sim 2 m$
\checkmark Two dimensionless parameters $\gamma=\frac{m \Omega}{e E_{0}}, v \equiv \frac{e E_{0}}{\Omega^{2}}$ control the interplay

- Sauter field is solvable, which can be compared w/ Schwinger \& one-photon

$$
\begin{gathered}
\gamma \gg 1, \quad v \ll 1 \Rightarrow \text { pert. one-photon } \\
\gamma \ll 1, v \gg 1 \Rightarrow \text { non-pert. tunneling } \\
v=\frac{e E_{0} / \Omega}{\Omega}=\frac{\text { (work done by E-field) }}{\text { (photon energy) }} \\
=\text { (\# of photons involved) }
\end{gathered}
$$

Intra- and inter-band contributions

FIG. 2. HHG spectrum for the oscillating field (10), with $\Omega /(\Delta / 2)=1 / 4, e E_{0} /(\Delta / 2)^{2}=1$ (i.e., $\gamma=1 / 4$) and $\Omega t_{\mathrm{in}}=$ $-17 \pi / 3, T_{w}=2\left|t_{\text {in }}\right|$. The parameter set corresponds to, e.g., $\Omega / 2 \pi=1 \mathrm{THz}$ and $E_{0}=4.2 \mathrm{kV} / \mathrm{cm}$ for a Dirac material with Fermi velocity $v_{\mathrm{F}}=10^{6} \mathrm{~m} / \mathrm{s}$ and mass $\Delta=33 \mathrm{meV}$.

Analytical expression for the current

$$
\begin{align*}
\tilde{J}_{\text {intra }} \sim & \mathrm{e}^{-\frac{2 \mathrm{Re} \sigma}{\hbar}} \frac{-\mathrm{i}}{\pi \cos ^{2} \frac{\theta}{2}} \sum_{n=-\infty}^{\infty}\left[\sum_{ \pm} \mathrm{e}^{+\mathrm{i} \pi\left(\left\lceil\frac{\left.\left.t_{\text {in }}\right\rceil-\frac{1}{\pi / \Omega}\right)\left(\mp \frac{\theta}{\pi}-1\right)}{} \frac{\sin \frac{\theta}{2}}{4\left(n-\frac{\theta}{2 \pi}\right)} \tilde{W}\left(\omega-\Omega \mp 2\left(n-\frac{\theta}{2 \pi}\right) \Omega\right)-\frac{\tilde{W}(\omega-(2 n-1) \Omega)}{2 n-1}\right],\right.} \begin{array}{rl}
\tilde{J}_{\text {inter }} \sim \mathrm{e}^{-\frac{\mathrm{Re} \sigma}{\hbar}} \frac{-\mathrm{i}(-1)^{\left\lceil\frac{t_{\text {in }}}{\pi / \Omega}\right.} \gamma}{4 \pi \cos \frac{\theta}{2}} \sum_{n=-\infty}^{+\infty} \sum_{ \pm}\left[\left(\ln \gamma^{2}+2 H_{ \pm n-1 / 2}\right) \mathrm{e}^{+\mathrm{i} \pi\left(\left\lceil\frac{t_{\text {in }}}{\pi / \Omega}\right\rceil-\frac{1}{2}\right)\left(\mp \frac{\theta}{\pi}-1\right)} \tilde{W}\left(\omega \mp 2\left(n-\frac{\theta}{2 \pi}\right) \Omega\right)\right] \\
& \left.+\left(\ln \left(4 \gamma^{2}\right)-\left((-1)^{n} \cos \frac{\theta}{2}-1\right) H_{\frac{n}{2} \pm \frac{\theta}{4 \pi}-1}+\left((-1)^{n} \cos \frac{\theta}{2}+1\right) H_{\frac{n}{2} \pm \frac{\theta}{4 \pi}-\frac{1}{2}}\right) \tilde{W}(\omega-(2 n-1) \Omega)\right],
\end{array},\right. \text { (11)}
\end{align*}
$$

