Schwinger mechanism with time-dependent electric fields

Hidetoshi TAYA

RIKEN iTHEMS

- Interplay between perturbative & non-perturbative particle production: [<u>HT</u>, Fujii, Itakura, PRD (2014)] [<u>HT</u>, Fujimori, Misumi, Nitta, Sakai, JHEP (2021)]
- Dynamically assisted Schwinger mechanism and Furry-picture perturbation theory: [HT, PRD (2019)] [Huang, HT, PRD (2019)]
- Review on strong-field QED: [Fedotov, Ilderton, Karbstein, King, Seipt, <u>HT</u>, Torgrimsson, 2203.00019]

What is the Schwinger mechanism?

[Sauter (1932)] [Heisenberg, Euler (1936)] [Schwinger (1951)]

✓ Vacuum pair production occurs in the presence of strong E-fields

Intuitive picture for a slow electric field = **quantum tunneling**

What is the Schwinger mechanism?

[Sauter (1932)] [Heisenberg, Euler (1936)] [Schwinger (1951)]

✓ Vacuum pair production occurs in the presence of strong E-fields

Intuitive picture for a slow electric field = **quantum tunneling**

✓ For constant strong E-field E(t, x) = E, it's understood well theoretically)

$$N_{e^{\pm}} = \frac{(eE)^2 VT}{(2\pi)^3} \times \exp\left[-\pi \frac{m^2}{eE}\right] \sim \exp\left[-\# \times (\text{gap height}) \times (\text{gap length})\right]$$
[Schwinger (1951)]

- Non-perturbative ⇒ Interesting, since it is the unexplored region of QED (or QFT)
- Vacuum process ⇒ Fundamental, since all the physical processes occur on top of vacuum
- However, exponentially suppressed i.t.o. mass ⇒ Not confirmed by experiments yet...

cf.) Guinness world record: [Yanovsky et al (2008)] HERCULES laser $eE \sim \sqrt{10^{22} \text{ W/cm}^2} \sim (0.01 \text{ MeV})^2 \ll m_e^2 \sim \sqrt{10^{29} \text{ W/cm}^2} \sim (0.5 \text{ MeV})^2$

✓ Now is the best time to study the Schwinger mechanism !

Developments in experimental technologies ⇒ **Novel strong-field sources**

✓ Now is the best time to study the Schwinger mechanism !

Developments in experimental technologies ⇒ **Novel strong-field sources**

ex.1) Intense lasers

✓ Now is the best time to study the Schwinger mechanism !

Developments in experimental technologies ⇒ **Novel strong-field sources**

ex.1) Intense lasers

• (ultra)peripheral collisions

$$eE, eB \sim \frac{\alpha Z v \gamma}{r^2} \sim \alpha Z \gamma \times m_{\pi}^2$$

[Skokov, Illarionov, Toneev (2009)] [Deng, Huang (2012)]

- glasma (color flux tube) $gE_{color}, gB_{color} \sim Q_s^2 \sim O(1) \text{ GeV}^2$
- ex.2) Heavy-ion collisions eral collisions $\sim \alpha Z\gamma \times m_{\pi}^{2}$ v, Toneev (2009)] 12)] or flux tube) $\sim Q_{s}^{2} \sim O(1) \text{ GeV}^{2}$

```
• Also in other geometries:
```

[Lappi, McLerran (2006)]

- asymmetric coll. [Hirono, Hongo, Hirano (2014)] [Voronyuk, et al (2014)]

- low-energy coll. [Review: Rafelski, et al (2014)] [Maltsev et al (2019)]

✓ Now is the best time to study the Schwinger mechanism !

Developments in experimental technologies ⇒ **Novel strong-field sources**

ex.1) Intense lasers

- ex.2) Heavy-ion collisions
- (ultra)peripheral collisions

$$eE, eB \sim \frac{\alpha Z v \gamma}{r^2} \sim \alpha Z \gamma \times m_{\pi}^2$$

[Skokov, Illarionov, Toneev (2009)] [Deng, Huang (2012)]

• glasma (color flux tube) $gE_{color}, gB_{color} \sim Q_s^2 \sim O(1) \text{ GeV}^2$

• Also in other geometries:

[Lappi, McLerran (2006)]

- asymmetric coll. [Hirono, Hongo, Hirano (2014)] [Voronyuk, et al (2014)]
 low-energy coll. [Review: Rafelski, et al (2014)] [Maltsev et al (2019)]
- [Allor, Cohen, McGady (2008)] [Solinas, Amoretti, Giazotto (2021)] ex.3) Cond-mat analogues: Graphene, Cold atom, Superconductor, Semiconductor, ... [Szpak, Shutzhold (2012)] [Thesis by Linder; 1807.08050]

✓ Now is the best time to study the Schwinger mechanism !

Developments in experimental technologies ⇒ **Novel strong-field sources**

ex.1) Intense lasers

- ex.2) Heavy-ion collisions
- (ultra)peripheral collisions

$$eE, eB \sim \frac{\alpha Z v \gamma}{r^2} \sim \alpha Z \gamma \times m_{\pi}^2$$

[Skokov, Illarionov, Toneev (2009)] [Deng, Huang (2012)]

• glasma (color flux tube) $gE_{color}, gB_{color} \sim Q_s^2 \sim O(1) \text{ GeV}^2$

• Also in other geometries:

[Lappi, McLerran (2006)]

- asymmetric coll. [Hirono, Hongo, Hirano (2014)] [Voronyuk, et al (2014)]
- low-energy coll. [Review: Rafelski, et al (2014)] [Maltsev et al (2019)]

[Allor, Cohen, McGady (2008)] [Solinas, Amoretti, Giazotto (2021)] ex.3) Cond-mat analogues: Graphene, Cold atom, Superconductor, Semiconductor, ... [Szpak, Shutzhold (2012)] [Thesis by Linder; 1807.08050]

✓ Schwinger's result is insufficient for actual problems ⇒ Beyond Schwinger !

- Inhomogeneous field (e.g., time- & space-dependence, more efficient field config., ...)
- Realtime dynamics (e.g., backreaction, intermediate particle number, ...)
- Higher-loop effects (e.g., radiation, mass shift, exponentiation conjecture, ...)
- Other observables (e.g., spin, chirality, high-harmonic generation, ...)

Today's talk

- Topic: the Schwinger mechanism with time-depending E-field

Part I: Interplay b/w non-pert. & pert. production mechanisms

[HT, Fujii, Itakura, PRD (2014)] [HT, Fujimori, Misumi, Nitta, Sakai, JHEP (2021)]

Part II: Dynamically assisted Schwinger mechanism

[HT, PRD (2019)] [Huang, HT, PRD (2019)]

The most important message

Perturbation theory in the Furry picture gives you a very powerful analytical approach for the Schwinger mechanism with time-dependent E-field

Introduction ↓ Part I: Interplay b/w non-pert. & pert. production mechanisms ↓ Part II:

Dynamically assisted Schwinger mechanism

Summary

Background (1/2): Interplay b/w non-pert. & pert. mech.

✓ Consider time-dependent E-field, having strength e_{E_0} and frequency Ω

Background (1/2): Interplay b/w non-pert. & pert. mech.

- ✓ Consider time-dependent E-field, having strength e_0 and frequency Ω
- The tunneling picture should break down if the frequency Ω is large

Background (1/2): Interplay b/w non-pert. & pert. mech.

- ✓ Consider time-dependent E-field, having strength e_0 and frequency Ω
- The tunneling picture should break down if the frequency Ω is large

For large Ω, E-field may behave like a photon and interact incoherently (perturbatively)
 ⇒ an analogue of photo-electric effect in materials

✓ The interplay is said to be "confirmed" by (but only by) semi-classical analysis

✓ The interplay is said to be "confirmed" by (but only by) semi-classical analysis

• Trans-series expansion in terms of \hbar

 $N = \sum_{n,m} N_{n,m} \hbar^{n} e^{-mS/\hbar} = (N_{0,1} + O(\hbar)) e^{-S/\hbar} + O(e^{-2S/\hbar})$

- Steepest descent analysis [Brezin, Itzykson (1970)]
- Imaginary-time method [Popov (1972)]
- Divergent asymptotic series method [Berry (1989)]
 - Worldline instanton method [Dunne, Shubert (2005)]
 - (exact) WKB [HT, Fujimori, Misumi, Nitta, Sakai (2020)]
- Valid in the slow limit $\hbar \ll 1 \Leftrightarrow \Omega \ll 1$: $\therefore i\hbar \partial_t \psi = H(\Omega t)\psi \xrightarrow[\tau \equiv t/\hbar]{} i\partial_\tau \psi = H(\hbar \Omega \tau)\psi$

✓ The interplay is said to be "confirmed" by (but only by) semi-classical analysis

The interplay is said to be "confirmed" by (but only by) semi-classical analysis

✓ However, you should not be convinced with the semi-classical argument

+ Fast limit $\gamma \gg 1$ is quite dangerous

 \Rightarrow Q1: What is really happening at $\gamma \gg 1$?

- Another dimensionless parameter should exist
- \therefore 3 dimension**ful** parameters m, eE_0, Ω

 \Rightarrow 2 dimension**less** parameters \Rightarrow **Q2: Why only** γ **? The other has no** Γ **ole in the interplay ?**

Idea: One-photon process

✓ One-photon process is the key to answer Q1 & Q2!

Idea: One-photon process

- ✓ One-photon process is the key to answer Q1 & Q2!
- ✓ Larger Ω, more perturbative \Rightarrow one-photon dominates eventually
 - because there is no time to interact many times, no matter how strong eE_0 is

multiple scatterings

finite # of scatterings

- cover different region, as # of photons should be huge $\frac{2m}{\Omega} \rightarrow \infty$ in the semi-classics
- analytical formula is available (for any field config. !)

$$N_{1-\text{photon}} = \sum_{s,s'} \int d^3 \boldsymbol{p} \, d^3 \boldsymbol{p'} \left| \begin{array}{c} \boldsymbol{p}, s \\ \boldsymbol{p'}, s' \end{array} \right|^2 = \frac{V}{(4\pi)^2} \int_{2m}^{\infty} d\omega \sqrt{1 - \frac{4m^2}{\omega^2}} \frac{1}{3} \left(2 + \frac{4m^2}{\omega^2}\right) \left| e\tilde{E}(\omega) \right|^2$$
[HT, Fujii, Itakura (2014)] [QFT textbook by Itzykson, Zuber]

Result: Interplay b/w tunneling, multi-, one-photon

✓ An explicit demonstration for Sauter pulsed E-field $eE(t) = \frac{eE_0}{\cosh^2(\Omega t)}$

• One-photon dominates for large Ω ,

where semi-classical methods fail,

One-photon is more efficient

than tunneling ; N is the largest at $\Omega \sim 2m$

Result: Interplay b/w tunneling, multi-, one-photon

✓ An explicit demonstration for Sauter pulsed E-field $eE(t) = \frac{eE_0}{\cosh^2(\Omega t)}$

One-photon dominates for large Ω ,

where semi-classical methods fail,

One-photon is more efficient

than tunneling ; N is the largest at $\Omega \sim 2m$

 $\gamma > 1$ $\nu < 1$

✓ Two dimensionless parameters $\gamma = \frac{m\Omega}{eE_0}$, $\nu \equiv \frac{eE_0}{\Omega^2}$ control the interplay

 Sauter field is solvable, which can be compared w/ Schwinger & one-photon

> $\gamma \gg 1$, $\nu \ll 1 \Rightarrow$ pert. one-photon $\gamma \ll 1$, $\nu \gg 1 \Rightarrow$ non-pert. tunneling

•
$$\nu = \frac{eE_0/\Omega}{\Omega} = \frac{\text{(work done by E-field)}}{\text{(photon energy)}}$$

= (# of photons involved)

Message of Part I

- (1) The interplay b/w non-pert. & pert. production mechanisms is controlled by $\gamma = \frac{m\Omega}{eE}$ (Keldysh parameter) and also by $\nu = \frac{eE}{\Omega^2}$ (~ # of photons involved)
- (2) Semi-classical methods (e.g., worldline) are dangerous for $\gamma \gg 1$; It breaks down for $\nu \gtrsim 1$, where one-photon process dominates

(3) One-photon pert. production is very efficient, compared to non-pert. tunneling

⇒ This is the essence of the dynamically assisted Schwinger mech., as I show from now

[<u>HT</u>, Fujii, Itakura, PRD (2014)] [<u>HT</u>, Fujimori, Misumi, Nitta, Sakai, JHEP (2021)]

Introduction Part I: Interplay b/w non-pert. & pert. production mechanisms ↓ Part II: **Dynamically assisted Schwinger mechanism**

- ✓ In Part I, I discussed E-field having a single frequency mode Ω
- ✔ What if E-field is bi-frequent; superposition of slow strong + weak fast E-fields ?

- ✓ In Part I, I discussed E-field having a single frequency mode Ω
- ✓ What if E-field is bi-frequent; superposition of slow strong + weak fast E-fields ?
 - Combinatorial effects of non-pert. & pert. mechs. ⇒ dynamically assisted Schwinger mech.

- ✓ In Part I, I discussed E-field having a single frequency mode Ω
- ✔ What if E-field is bi-frequent; superposition of slow strong + weak fast E-fields ?
 - Combinatorial effects of non-pert. & pert. mechs. ⇒ dynamically assisted Schwinger mech.

ex2) heavy-ion collisions: (Mini-)jets on top of glasma, Event generators (e.g., PYTHIA)

- ✓ In Part I, I discussed E-field having a single frequency mode Ω
- ✔ What if E-field is bi-frequent; superposition of slow strong + weak fast E-fields ?
 - Combinatorial effects of non-pert. & pert. mechs. ⇒ dynamically assisted Schwinger mech.

perturbative scattering $N \sim \exp[-\# \times (\text{gap height}) \times (\text{gap length})] \Rightarrow Enhancement in production$ (even though the fast field is very weak)

Phenomenological importance:
 ex1) laser: available E-field is still weak ⇒ needs enhancement to observe the Schwinger mech
 ex2) heavy-ion collisions: (Mini-)jets on top of glasma, Event generators (e.g., PYTHIA)

• Typically, analyzed within semi-classical methods

BUT: NOT quantitatively good

Q: Better method ???

 \Rightarrow A: Perturbation theory in the Furry picture

Perturbation theory in Furry picture

Idea

Split the field *E* into strong E_S and weak E_w parts and treat

 $E_{\rm S}$ and $E_{\rm w}$ non-perturbatively and perturbatively, respectively.

cf. distorted Born wave approximation in quantum mechanics

Perturbation theory in Furry picture (1/3)

Perturbation theory in Furry picture (1/3)

STEP 1	Split the total <i>E</i> into strong slow E_S & weak fast \mathcal{E}_w
	$E = \frac{E_s}{E_w} + \frac{\mathcal{E}_w}{E_w}$
STEP 2	Solve Dirac eq. non-pert. w.r.t. <mark>E</mark> _s , but just pert. w.r.t. <mark>E</mark> _w
	$[i\partial - eA_{s} - m]\hat{\psi} = eA_{w}\hat{\psi}$ $\Rightarrow \hat{\psi}(x) = \hat{\psi}^{(0)}(x) + \int_{-\infty}^{\infty} dy^{4}S_{R}(x, y)eA_{w}(y)\hat{\psi}^{(0)}(y) + O(eA_{w} ^{2})$ Here, $\hat{\psi}^{(0)}$ and S_{R} are non-perturbatively dressed by E_{s} as $[i\partial - eA_{s} - m]\hat{\psi}^{(0)} = 0$ $[i\partial - eA_{s} - m]S_{R}(x, y) = \delta^{4}(x - y)$

Perturbation theory in Furry picture (2/3)

STEP 3

Compute in/out annihilation operators $\hat{a}_{p,s}^{\mathrm{in/out}}$, $\hat{b}_{p,s}^{\mathrm{in/out}}$ from $\hat{\psi}$

$$\begin{pmatrix} \hat{a}_{\boldsymbol{p},s}^{\text{in/out}} \\ \hat{b}_{-\boldsymbol{p},s}^{\text{in/out}\dagger} \end{pmatrix} \equiv \lim_{t \to -\infty/+\infty} \int d^3 x \begin{pmatrix} (u_{\boldsymbol{p},s} e^{-i\omega_{\boldsymbol{p}}t} e^{i\boldsymbol{p}\cdot\boldsymbol{x}})^{\dagger} \\ (v_{\boldsymbol{p},s} e^{+i\omega_{\boldsymbol{p}}t} e^{i\boldsymbol{p}\cdot\boldsymbol{x}})^{\dagger} \end{pmatrix} \hat{\psi}(x)$$

Perturbation theory in Furry picture (2/3)

STEP 3

Compute in/out annihilation operators $\hat{a}_{p,s}^{ ext{in/out}}$, $\hat{b}_{p,s}^{ ext{in/out}}$ from $\hat{\psi}$

$$\begin{pmatrix} \hat{a}_{\boldsymbol{p},s}^{\text{in/out}} \\ \hat{b}_{-\boldsymbol{p},s}^{\text{in/out}\dagger} \end{pmatrix} \equiv \lim_{t \to -\infty/+\infty} \int d^3 x \begin{pmatrix} (u_{\boldsymbol{p},s} e^{-i\omega_{\boldsymbol{p}t}} e^{i\boldsymbol{p}\cdot\boldsymbol{x}})^{\dagger} \\ (v_{\boldsymbol{p},s} e^{+i\omega_{\boldsymbol{p}t}} e^{i\boldsymbol{p}\cdot\boldsymbol{x}})^{\dagger} \end{pmatrix} \hat{\psi}(x)$$

 $\Rightarrow \hat{o}_{p,s}^{\text{in}}, \hat{o}_{p,s}^{\text{out}}$ are inequivalent $\hat{o}_{p,s}^{\text{in}} \neq \hat{o}_{p,s}^{\text{out}}$ and related with each other by a Bogoliubov transformation

$$\begin{pmatrix} \hat{a}_{\boldsymbol{p},s}^{\text{out}} \\ \hat{b}_{-\boldsymbol{p},s}^{\text{out}\dagger} \end{pmatrix} = \sum_{s'} \int d^3 \boldsymbol{p}' \begin{pmatrix} \alpha_{\boldsymbol{p},s;\boldsymbol{p}',s'} & \beta_{\boldsymbol{p},s;\boldsymbol{p}',s'} \\ -\beta_{\boldsymbol{p},s;\boldsymbol{p}',s'}^* & \alpha_{\boldsymbol{p},s;\boldsymbol{p}',s'}^* \end{pmatrix} \begin{pmatrix} \hat{a}_{\boldsymbol{p}',s'}^{\text{in}} \\ \hat{b}_{-\boldsymbol{p}',s'}^{\text{in}\dagger} \end{pmatrix}$$

where, up to 1st order in $e\mathcal{A}_{w'}$ $\alpha_{p,s;p',s'} = \int d^3x \, _+\psi_{p,s}^{(0)out\dagger} \, _+\psi_{p',s'}^{(0)in} - i \int d^4x \, _+\bar{\psi}_{p,s}^{(0)out} e\mathcal{A}_{w} \, _+\psi_{p',s'}^{(0)in} + O(|e\mathcal{A}_{w}|^2)$ $\beta_{p,s;p',s'} = \int d^3x \, _-\psi_{p,s}^{(0)out\dagger} \, _+\psi_{p',s'}^{(0)in} - i \int d^4x \, _-\bar{\psi}_{p,s}^{(0)out} e\mathcal{A}_{w} \, _+\psi_{p',s'}^{(0)in} + O(|e\mathcal{A}_{w}|^2)$

Here, $_{\pm}\psi_{p,s}^{(0)in/out}$ are sol. of Dirac eq. **dressed by** eA_s w/ different B.C.

$$[i\partial - eA_{s} - m]_{\pm}\psi_{p,s}^{(0)in/out} = 0 \quad \text{W/} \lim_{t \to -\infty/+\infty} \begin{pmatrix} +\psi_{p,s}^{(0)in/out} \\ -\psi_{p,s}^{(0)in/out} \end{pmatrix} = \begin{pmatrix} u_{p,s}e^{-i\omega_{p}t}e^{ip\cdot x} \\ v_{p,s}e^{-i\omega_{p}t}e^{ip\cdot x} \end{pmatrix}$$

Perturbation theory in Furry picture (3/3)

STEP 4

Evaluate the in-vacuum expectation value of # operator

$$\frac{\mathrm{d}^{3}N_{e}}{\mathrm{d}\boldsymbol{p}^{3}} \equiv \langle \mathrm{vac}; \mathrm{in} | a_{\boldsymbol{p},s}^{\mathrm{out}\dagger} a_{\boldsymbol{p},s}^{\mathrm{out}\dagger} | \mathrm{vac}; \mathrm{in} \rangle = \sum_{s'} \int \mathrm{d}^{3}\boldsymbol{p}' \left| \beta_{\boldsymbol{p},s;\boldsymbol{p}',s'} \right|^{2}$$

Perturbation theory in Furry picture (3/3)

STEP 4

Evaluate the in-vacuum expectation value of # operator

$$\frac{\mathrm{d}^{3}N_{e}}{\mathrm{d}\boldsymbol{p}^{3}} \equiv \langle \mathrm{vac}; \mathrm{in} | a_{\boldsymbol{p},s}^{\mathrm{out}\dagger} a_{\boldsymbol{p},s}^{\mathrm{out}\dagger} | \mathrm{vac}; \mathrm{in} \rangle = \sum_{s'} \int \mathrm{d}^{3}\boldsymbol{p}' \left| \beta_{\boldsymbol{p},s;\boldsymbol{p}',s'} \right|^{2}$$

Assume E_s is so slow that it can be approximated as a static E-field

- \Rightarrow analytical sol. of Dirac eq. $_{\pm}\psi_{p,s}^{(0)in/out}$ is known
- \Rightarrow one can evaluate $\beta_{p,s;p',s'}$ **exactly !**

Perturbation theory in Furry picture (3/3)

STEP 4

Evaluate the in-vacuum expectation value of # operator

$$\frac{\mathrm{d}^{3}N_{e}}{\mathrm{d}\boldsymbol{p}^{3}} \equiv \langle \mathrm{vac;\,in} | a_{\boldsymbol{p},s}^{\mathrm{out}\dagger} a_{\boldsymbol{p},s}^{\mathrm{out}\dagger} | \mathrm{vac;\,in} \rangle = \sum_{s'} \int \mathrm{d}^{3}\boldsymbol{p}' \left| \beta_{\boldsymbol{p},s;\boldsymbol{p}',s'} \right|^{2}$$

Assume E_s is so slow that it can be approximated as a static E-field

- \Rightarrow analytical sol. of Dirac eq. $_{\pm}\psi^{(0)in/out}_{p,s}$ is known
- \Rightarrow one can evaluate $\beta_{p,s;p',s'}$ **exactly**!

✓ Remarks

Directly computing VEV of # operator

 $\Rightarrow \text{ inclusive quantity that includes all the processes up to 1st order in <math>\mathcal{E}_{\mathbf{f}}$ $\langle \operatorname{vac}; \operatorname{in} | a_{p,s}^{\operatorname{out}} | \operatorname{vac}; \operatorname{in} \rangle = \sum_{u} | \langle e_{p,s} X; \operatorname{out} | \operatorname{vac}; \operatorname{in} \rangle |^2$ [Baltz, McLerran (2001)]

- Production number ≠ Vacuum decay rate [Cohen McGady (2008)] [Fukushima, Gelis, Lappi (2009)]
- No approximation in evaluating $\beta_{p,s;p',s'}$

within 0-th order WKB [Torgrimsson et al (2017)]

How good is the Furry picture?

Result: Furry picture vs exact & semi-classical results

✓ Case of $E = (0, 0, \frac{E_s}{S} + \frac{\mathcal{E}_w \cos \Omega t}{S})$

Excellent agreement b/w Furry picture and exact results !

- Furry picture is super powerful
- Physics lesson:

The dynamically assisted Schwinger mechanism

= One-photon process under E-field **Perturbative effect is the essence**

Technically nice, but physically what are new?

✓ Furry-picture perturbation theory revealed:

(1) Dynamically assisted Schwinger mech. beyond the semi-classical regime

(2) Spin production from the vacuum

(3) Effects spatial inhomogeneity

Result (1/3): Beyond the semi-classical regime

✓ Case of $E = (0, 0, \frac{E_s}{S} + \frac{\mathcal{E}_w \cos \Omega t}{S})$

"enhancement" is just a one aspect of the dynamically assisted Schwinger mech.

- shift of the one-photon peak $\Omega > 2m \Rightarrow$ increase of the effective mass in E-field
- non-trivial oscillations above the one-photon peak

related to the "band structure" of the QED vacuum (next slide)

• can be interpreted as an analogue of the Franz-Keldysh effect in semi-conductor (*next next slide*)

cf) Pondermotive energy in AC E-field

Interpretation: "Band structure" of QED vacuum

- Quantum tunneling ⇒ Enhancement
- Quantum reflection ⇒ Oscillation

⇒ The spectrum of the dynamically assisted Schwinger mech.
reflects the structure of the Dirac sea = QED vacuum

Analogue in semi-conductor: Franz-Keldysh effect

- Enhancement & oscillation are analogous to Franz-Keldysh effect in semi-conductors
 [Franz (1958)] [Keldysh (1958)]
 - ← Apply strong slow E-field & a photon (~ weak fast E-field) onto a semi-cond., and measure photo-absorption rate

✓ The observables are essentially the same: photo-absorption rate ~ Im[1-loop action] ~ total # of particles = int. of spectrum

Analogue in semi-conductor: Franz-Keldysh effect

- Enhancement & oscillation are analogous to Franz-Keldysh effect in semi-conductors
 [Franz (1958)] [Keldysh (1958)]
 - ⇐ Apply strong slow E-field & a photon (~ weak fast E-field) onto a semi-cond., and measure photo-absorption rate

- ✓ The observables are essentially the same: photo-absorption rate ~ Im[1-loop action] ~ total # of particles = int. of spectrum
- ✓ The curves are the same !

⇒ the dynamically assisted Schwinger mech. (2008~) = Franz-Keldysh effect (1958~)

Technically nice, but physically what are new?

✓ Furry-picture perturbation theory revealed:

(1) Dynamically assisted Schwinger mech. beyond the semi-classical regime

(2) Spin production from the vacuum

(3) Effects spatial inhomogeneity

Result (2/3): Spin production from the vacuum

✓ The Schwinger mechanism is <u>usually</u> independent of spin

(spin quantization axis \propto E-field)

$$N_{e^{\pm}} = \frac{(eE)^2 VT}{(2\pi)^3} \times \exp\left[-\pi \frac{m^2}{eE}\right] \sim \exp\left[-\# \times (\text{gap height}) \times (\text{gap length})\right]$$

linearly-polarized E-field does not couple to spin ⇒ gap is independent of spin

• true for the dynamically assisted Schwinger mechanism for $E = (0,0, E_s + \mathcal{E}_w(t))$

Result (2/3): Spin production from the vacuum

✓ The Schwinger mechanism is <u>usually</u> independent of spin

(spin quantization axis \propto E-field)

 $N_{e^{\pm}} = \frac{(eE)^2 VT}{(2\pi)^3} \times \exp\left[-\pi \frac{m^2}{eE}\right] \sim \exp\left[-\# \times (\text{gap height}) \times (\text{gap length})\right]$

- linearly-polarized E-field does not couple to spin \Rightarrow gap is independent of spin
- true for the dynamically assisted Schwinger mechanism for $E = (0,0, \frac{E_s}{E_s} + \frac{\mathcal{E}_w(t)}{\mathcal{E}_s})$
- ✓ If E-field is circularly polarized (e.g., has transverse components $E = (\mathcal{E}_w(t), 0, \mathcal{E}_s)$), the Schwinger mechanism <u>can depend</u> on spin
 - intuitive reason: spin-orbit coupling $\propto s \cdot (v \times E)$ [Foldy, Wouthuysen (1950)] [Tani (1951)]

Result (2/3): Spin production from the vacuum

✓ The Schwinger mechanism is <u>usually</u> independent of spin

(spin quantization axis \propto E-field)

 $N_{e^{\pm}} = \frac{(eE)^2 VT}{(2\pi)^3} \times \exp\left[-\pi \frac{m^2}{eE}\right] \sim \exp\left[-\# \times (\text{gap height}) \times (\text{gap length})\right]$

- linearly-polarized E-field does not couple to spin \Rightarrow gap is independent of spin
- true for the dynamically assisted Schwinger mechanism for $E = (0,0, \frac{E_s}{E_w} + \frac{\mathcal{E}_w(t)}{E_w})$
- ✓ If E-field is circularly polarized (e.g., has transverse components $E = (\mathcal{E}_w(t), 0, \mathcal{E}_s)$), the Schwinger mechanism <u>can depend</u> on spin
 - intuitive reason: spin-orbit coupling $\propto s \cdot (v \times E)$ [Foldy, Wouthuysen (1950)] [Tani (1951)]

✓ Technically, there was <u>NO</u> good analytical approach

• naïve semi-classical formula can be applied <u>only</u> to linearly-polarized case [Takayoshi, Wu, Oka, (2021)] → the perturbation theory in the Furry picture can deal with this problem!

• Technical point:

Good agreement with numerics (though I haven't plotted here)

• Physics lessons:

- Non-negligible (~10%) spin imbalance appears
- Angular dependence due to spin-orbit coupling $\propto s \cdot (p \times E)$
- No essential difference in enhancement & oscillation from the linearly-polarized case

Technically nice, but physically what are new?

✓ Furry-picture perturbation theory revealed:

(1) Dynamically assisted Schwinger mech. beyond the semi-classical regime

(2) Spin production from the vacuum

(3) Effects spatial inhomogeneity

Result (3/3): Spatial inhomogeneity

✓ What if E-field has spatial inhomogeneity $E(t) \rightarrow E(t, x)$?

• No established analytical methods

e.g.) locally-constant-field approximation: $N \sim V \exp\left[-\frac{\pi m^2}{eE}\right] \rightarrow \int d^3x \exp\left[-\frac{\pi m^2}{eE(t,x)}\right]$ \Rightarrow NOT good even without spatial inhomogeneity...

[Bulanov et al. (2004)]

• Numerical simulation is also heavy: 1+0+3 dim. $\rightarrow 1+3+3$ dim.

Result (3/3): Spatial inhomogeneity

✓ What if E-field has spatial inhomogeneity $E(t) \rightarrow E(t, x)$?

• No established analytical methods

(1)

(2)

e.g.) locally-constant-field approximation: $N \sim V \exp\left[-\frac{\pi m^2}{eE}\right] \rightarrow \int d^3 x \exp\left[-\frac{\pi m^2}{eE(t,x)}\right]$ \Rightarrow NOT good even without spatial inhomogeneity...

[Bulanov et al. (2004)]

• Numerical simulation is also heavy: $1+0+3 \text{ dim.} \rightarrow 1+3+3 \text{ dim.}$

Perturbation theory in the Furry picture can be applied if:

$$\frac{\mathrm{d}^{3}N_{e}}{\mathrm{d}p^{3}} \equiv \langle \mathrm{vac}; \mathrm{in} | a_{p,s}^{\mathrm{out}\dagger} a_{p,s}^{\mathrm{out}} | \mathrm{vac}; \mathrm{in} \rangle = \sum_{s'} \int \mathrm{d}^{3}p' \left| \beta_{p,s;p',s'} \right|^{2}$$
where $\beta_{p,s;p',s'} = \int \mathrm{d}^{3}x_{-}\psi_{p,s}^{(0)\mathrm{out}\dagger} \psi_{p',s'}^{(0)\mathrm{in}} - i \int \mathrm{d}^{4}x_{-}\overline{\psi}_{p,s}^{(0)\mathrm{out}} e\mathcal{A}_{\mathrm{w}} \psi_{p',s'}^{(0)\mathrm{in}} + O(|e\mathcal{A}_{\mathrm{w}}|^{2})$
the wave function $\pm \psi_{p',s'}^{(0)\mathrm{in}}$ under eE_{s} is known
 $e\mathcal{A}_{\mathrm{w}}$ is sufficiently weak

Result (3/3): Spatial inhomogeneity

✓ Example: $E = (0, 0, \frac{E_s}{S} + \frac{\mathcal{E}_w}{\sin(Q_0 t - Q_3 z)})$

(reduce to non-linear Breit-Wheeler for $Q_0 = Q_3$)

[HT, unpublished]

- Essentially the same as the case without spatial inhomogeneity e.g.) enhancement below the threshold & oscillation above the threshold
- Role of spatial inhomogeneity = modify the thresholds by supplying momentum $Q_0 \sim 2m \rightarrow 2\sqrt{m^2 + Q_3^2}$

⇒ Time-dependence (i.e., energy injection) is the essence of the Schwinger mechanism

Spatial inhomogeneity may result in something interesting when the spatial inhomogeneity (1) is strong and/or (2) has transverse components, for which magnetic effects (e.g., spin/chiral stuffs) should appear

Message of Part II

- (1) The perturbation theory in the Furry picture is a very powerful analytical approach for the Schwinger mechanism with (space)time-dependent E-field
- (2) The essence of the dynamically assisted Schwinger mech. is the pert. one-photon process
- (3) The dynamically assisted Schwinger mechanism has rich physics other than simply enhancing the particle production (e.g., oscillation, mass shift, spin generation)

[HT, PRD (2019)] [Huang, HT, PRD (2019)]

Part I: Interplay b/w non-pert. & pert. production mechanisms Part II: Summary

Summary

I discussed the Schwinger mechanism under time-depending E-field:

Part I: Interplay b/w non-pert. & pert. production mechanisms

- The interplay is controlled by $\gamma \equiv \frac{m\Omega}{eE}$ (Keldysh parameter) and also by $\nu \equiv \frac{eE}{\Omega^2}$
- Semi-classical methods are invalid when $\nu \gtrsim 1$, where one-photon process dominates
- One-photon production is very efficient, compared to non-pert. tunneling

Part II: Dynamically assisted Schwinger mechanism

- The perturbation theory in the Furry picture is a powerful analytical approach for the Schwinger mechanism with (space)time-dependent E-field
- The essence of the dynamically assisted Schwinger mech. is the pert. one-photon process
- The dynamically assisted Schwinger mechanism has rich physics other than simply enhancing the particle production (e.g., oscillation, mass shift, spin generation)
 - Interplay between perturbative & non-perturbative particle production: [<u>HT</u>, Fujii, Itakura, PRD (2014)] [<u>HT</u>, Fujimori, Misumi, Nitta, Sakai, JHEP (2021)]
 - Dynamically assisted Schwinger mechanism and Furry-picture perturbation theory: [HT, PRD (2019)] [Huang, HT, PRD (2019)]
 - Review on strong-field QED: [Fedotov, Ilderton, Karbstein, King, Seipt, <u>HT</u>, Torgrimsson, 2203.00019]

BACKUP

Validity of Furry-picture perturbation theory

FIG. 9. A comparison between the numerical results (points) and the analytical results (lines) for the momentum distribution $n_{p,\uparrow}^{(-)}$ as a function of the strength of the perturbation \mathcal{E}_{\perp} for several values of the frequency Ω . The parameters are the same as in Fig. 3, i.e., $e\bar{E}/m^2 = 0.4$, $\mathcal{E}_3/\bar{E} = 0$, $p_{\perp}/m = 1$, $p_3/m = 0$, $\phi = 1$, and $m\tau = 100$.

Furry-picture formula for parallel $E_s \mid\mid \mathcal{E}_f$

✓ Analytical formula for $E = (0,0, \frac{E_s}{E_s} + \frac{\mathcal{E}_f(t)}{E_s})$, with arbitrary time-dep.

• is applicable even for very fast \mathcal{E}_{f} and reproduces numerics very well (show later)

- describes interplay b/w Schwinger & one-photon process smoothly:
 - Slow limit $\omega/\sqrt{eE_s} \ll 1$: dominates \Rightarrow Schwinger formula

$$\frac{\mathrm{d}^{3}N_{e}}{\mathrm{d}\boldsymbol{p}^{3}} \sim \frac{V}{(2\pi)^{3}} \exp\left[-\frac{\pi(m^{2}+\boldsymbol{p}_{\perp}^{2})}{eE_{s}}\right] \left|1 + \frac{\pi}{2}\frac{m^{2}+\boldsymbol{p}_{\perp}^{2}}{eE_{s}}\frac{\boldsymbol{\mathcal{E}}_{f}}{E_{s}}\right|^{2} \sim \frac{V}{(2\pi)^{3}} \exp\left[-\frac{\pi(m^{2}+\boldsymbol{p}_{\perp}^{2})}{e(E_{s}+\boldsymbol{\mathcal{E}}_{f})}\right]$$

- Fast limit $\omega/\sqrt{eE_s} \gg 1$: dominates \Rightarrow one-photon process $\frac{\mathrm{d}^3 N_e}{\mathrm{d} p^3} \sim \frac{V}{(2\pi)^3} \frac{1}{4} \frac{m^2 + p_{\perp}^2}{\omega_n^2} \frac{|e\widetilde{\mathcal{E}}_{\mathrm{f}}(2\omega_p)|^2}{\omega_n^2}$

Furry-picture formula for general $E_s \not\in \mathcal{E}_f$

✓ Generalization of the analytical formula for $E_s || \mathcal{E}_f \rightarrow E_s \not\prec \mathcal{E}_f$

- becomes complicated (seen = new terms), but the basic structure is the same
- [Takayoshi, Wu, Oka (2020)] • spin-dependence appears even without magnetic fields
 - \therefore Dirac particle has a spin-orbit coupling $s \cdot (p \times \mathcal{E})$

[Foldy, Wouthuysen (1950)] [Tani (1951)]

 $E_{\rm s}$ $\mathcal{E}_{\rm f}$ • can be applied to rotating E-fields: $E = E_0(\cos(\Omega t), \sin(\Omega t), 0) \sim (E_0, E_0\Omega t, 0)$ Numerical studies: [Blinne, Strobel (2015)] [Strobel, Xue (2015)] [Woller, Bauke, Keitel (2015)] [Kohlfurst (2019)]