Enhancement of chirality production from the vacuum by time-dependent electromagnetic fields

Hidetoshi Taya

(RIKEN iTHEMS)

Ref: <u>HT</u>, Phys.Rev.Res. 2 (2020) 2, 023257 [2003.08948] Fukushima, Hidaka, Shimazaki, <u>HT</u>, in preparation

Advertisement: NEW theoretical review on strong-field QED Fedotov, Ilderton, Karbstein, King, Seipt, <u>HT</u>, Torgrimsson, 2203.00019

<u>Summary</u>

Chirality production from the vacuum for massive fermions ⇒ well understood for slow EM fields

- Driven by the Schwinger mechanism
- Exponentially suppressed \Rightarrow <u>Difficult to be observed in experiments</u>

Problem	Enhancement mechanism for chirality production ?
Idea	Use time-dependent <mark>fast</mark> EM fields
Method	(1) Deuteurhetienstheemsingthee Frankryskingter
	(1) Perturbation theory in the Furry picture
(2) Floquet approach (high-frequency expansion)	
Result & Message	
Chirality production is significantly enhanced if EM fields are fast	
\Rightarrow worthwhile to investigate chirality-related phenomena in strong-field QED	

1. Introduction

- 2. Enhancement of chirality production by dynamically assisted Schwinger mech.
- 3. Enhancement of chirality production by perturbative mechanism with fast E

4. Summary

Chirality production

✓ Chirality is produced through anomaly when $E \cdot B \neq 0$

• Microscopically, the interplay b/w Schwinger mech. by E-field & Landau quant. by B-field

Chirality production

✓ Chirality is produced through anomaly when $E \cdot B \neq 0$

• Microscopically, the interplay b/w Schwinger mech. by E-field & Landau quant. by B-field

• $E \cdot B \neq 0$ is realized in various physical situations and leads to interesting phenomena ex.1) In particle & cond-mat physics: Anomalous transport phenomena (e.g., Chiral Magnetic Effect, ex.2) In laser physics, $E \cdot B \neq 0$ can be realized by a collision of two counter propagating standing waves

$$A_1 \propto \begin{pmatrix} 0\\1\\0 \end{pmatrix} \sin(\omega(+x-t)), A_2 \propto \begin{pmatrix} 0\\\sin\phi\\\cos\phi \end{pmatrix} \sin(\omega(-x-t)) \Rightarrow E \cdot B = \frac{\cos\phi}{1+\sin\phi}$$

• is important for get a deeper understanding of chiral anomaly

Chirality production

✓ Chirality is produced through anomaly when $E \cdot B \neq 0$

• Microscopically, the interplay b/w Schwinger mech. by E-field & Landau quant. by B-field

• $E \cdot B \neq 0$ is realized in various physical situations and leads to interesting phenomena ex.1) In particle & cond-mat physics: Anomalous transport phenomena (e.g., Chiral Magnetic Effect, ex.2) In laser physics, $E \cdot B \neq 0$ can be realized by a collision of two counter propagating standing waves

$$A_1 \propto \begin{pmatrix} 0\\1\\0 \end{pmatrix} \sin(\omega(+x-t)), A_2 \propto \begin{pmatrix} 0\\\sin\phi\\\cos\phi \end{pmatrix} \sin(\omega(-x-t)) \Rightarrow E \cdot B = \frac{\cos\phi}{1+\sin\phi}$$

is important for get a deeper understanding of chiral anomaly

Chirality production is suppressed strongly by mass

: $N_{\text{pair in LLL}} \propto e^{-\# m^2/eE} \Rightarrow$ Tiny effects... Difficult to observe...

Q: Any way to avoid the mass suppression ?

Idea: Increase the number of pairs $N_{\text{pair in LLL}} \Rightarrow$ Use fast E-field

Idea: Increase the number of pairs $N_{\text{pair in LLL}} \Rightarrow$ Use fast E-field

✓ Physics of particle prod. changes depending on frequency Ω of E-field

(1) Ω small \Rightarrow Non-perturbative tunneling (Schwinger mechanism)

Idea: Increase the number of pairs $N_{\text{pair in LLL}} \Rightarrow$ Use fast E-field

✓ Physics of particle prod. changes depending on frequency Ω of E-field

(1) Ω small \Rightarrow Non-perturbative tunneling (Schwinger mechanism)

<u>(3)</u>

Idea: Increase the number of pairs $N_{\text{pair in LLL}} \Rightarrow$ Use fast E-field

✓ Physics of particle prod. changes depending on frequency Ω of E-field

(1) Ω small \Rightarrow Non-perturbative tunneling (Schwinger mechanism)

(3) Superposition of large & small Ω 's \Rightarrow dynamically assisted Schwinger mech.

1. Introduction

2. Enhancement of chirality production by dynamically assisted Schwinger mech.

3. Enhancement of chirality production by perturbative mechanism with fast E

4. Summary

Method: Perturbation theory in the Furry picture

✓ Reason:

The most successful approach to the dynamically assisted Schwinger mech.

[Torgrimsson, Schneider, Oertel, Schutzhold (2017)] [Torgrimsson, Schneider, Schutzhold (2018)] [<u>HT</u>, (2019)] [Huang, <u>HT</u> (2019)]

Method: Perturbation theory in the Furry picture

Extend the E-field case to E||B case & compute chiral density

<u>SETUP</u>: Parallel strong slow \overline{E} , \overline{B} with perturbative weak fast \mathcal{E}

 $E(t) = \overline{E} + \mathcal{E}(t)$ $B(t) = \overline{B}$

Solve Dirac eq. under \overline{E} , \overline{B} non-perturbatively, and include effects of \mathcal{E} perturbatively

 $[i\partial - \mathbf{e}\overline{\mathbf{A}} - m]\widehat{\psi} = \mathbf{e}\mathbf{A}\widehat{\psi}$

 $\Rightarrow \hat{\psi}(x) = \hat{\psi}^{(0)}(x) + \int_{-\infty}^{\infty} \mathrm{d}y^4 S_{\mathrm{R}}(x, y) \boldsymbol{e}\boldsymbol{\mathcal{A}}(y) \hat{\psi}^{(0)}(y) + O(|\boldsymbol{e}\boldsymbol{\mathcal{A}}|^2)$

STEP 2: Compute VEV of chiral density operator

 $J_5^0 \equiv \lim_{t \to \infty} \int d\mathbf{x}^3 \left\langle \text{vac; in } \left| \hat{\psi} \gamma^5 \hat{\psi} \right| \text{vac; in} \right\rangle = O(1) + O(|\mathbf{eA}|^1) + O(|\mathbf{eA}|^2) + \cdots$

Result: Enhancement in chirality production

[<u>HT</u> (2020)]

✓ Analytical formula: $\frac{J_5^0}{VT} = \frac{e\overline{E}e\overline{B}}{2\pi^2} e^{-\pi \frac{m^2}{e\overline{E}}} \times \left[1 + \frac{2\pi}{T} \left(\frac{m^2}{e\overline{E}}\right)^2 \int_0^\infty d\omega \left|\frac{\tilde{\mathcal{E}}(\omega)}{\overline{E}} {}_1 \tilde{F}_1 \left(1 - \frac{i}{2} \frac{m^2}{e\overline{E}}; 2; \frac{i}{2} \frac{\omega^2}{e\overline{E}}\right)\right|^2\right]$

⇒ Huge enhancement by the dynamical assistance !!

- chirality production becomes free from the exponential suppression
- enhancement becomes more significant for more massive case

1. Introduction

- 2. Enhancement of chirality production by dynamically assisted Schwinger mech.
- 3. Enhancement of chirality production by perturbative mechanism with fast E

4. Summary

Method: Floquet approach (High-frequency expansion)

✓ Reason:

Quite successful in cond-mat community to describe high-frequency periodically driven systems

ex.) Floquet engineering of quantum materials Review: [Oka, Kiramura (2019)]

Method: Floquet approach (High-frequency expansion)

✔ Reason:

Quite successful in cond-mat community to describe high-frequency periodically driven systems ex.) Floquet engineering of quantum materials Review: [Oka, Kiramura (2019)]

✓ Floquet approach Review: [Bukov, D'Alessio, Polkovnikov (2015)]

Method: Floquet approach (High-frequency expansion)

✔ Reason:

Quite successful in cond-mat community to describe high-frequency periodically driven systems ex.) Floquet engineering of quantum materials Review: [Oka, Kiramura (2019)]

✓ Floquet approach Review: [Bukov, D'Alessio, Polkovnikov (2015)]

Result: Enhancement in chirality production

$$J_{5}^{0}(t,x) = \frac{1}{\pi} \left[\epsilon \int^{t} dt' \, eE + \epsilon^{3} (\partial_{x}^{2} - 2m^{2}) \int^{t} dt' \int^{t'} dt'' \int^{t''} dt''' \, eE + O(\epsilon^{5}) \right]$$

✓ Completely different parameter dependence compared to the slow E-field case

slow case:
$$J_5^0(t,x) = \frac{1}{\pi} \int^t dt' eE(t',x) e^{-\pi \frac{m^2}{|eE(t,x)|}}$$

 \Rightarrow No exponential suppression in the fast case

⇒ Enhancement by the fast E-field !!

(Even if E is weak, it produces huge chirality as long as it is fast)

1. Introduction

- 2. Enhancement of chirality production by dynamically assisted Schwinger mech.
- 3. Enhancement of chirality production by perturbative mechanism with fast E

4. Summary

Chirality production from the vacuum for massive fermions ⇒ well understood for slow EM fields

- Driven by the Schwinger mechanism
- Exponentially suppressed \Rightarrow <u>Difficult to be observed in experiments</u>

Problem	Enhancement mechanism for chirality production ?
Idea	Use time-dependent <mark>fast</mark> EM fields
Method	(1) Perturbation theory in the Furry picture
(2) Floquet approach (high-frequency expansion)	
Result & Message	
Chirality production is significantly enhanced if EM fields are fast	
\Rightarrow worthwhile to investigate chirality-related phenomena in strong-field QED	