Introduction to strong-field QED

Hidetoshi Taya

(an SPDR in iTHEMS, studying high-energy particle & nuclear physics)

Brief introduction to Strong-field QED

= an area to study what happens by a super strong light

(= electromagnetic field)

PART I: Basics of strong-field QED

• Why interesting \Rightarrow Unexplored non-perturbative regime of physics

Nontrivial phenomena that we've never seen e.g. Vacuum decay, Birefringence, New phase of matter, ...

• Why timely ⇒ Recent availability of strong fields e.g. High-power laser, Magnetar, heavy-ion collisions, ...

PART II: Sauter-Schwinger effect and its connection to other areas

- An interdisciplinary topic
 - \Rightarrow Exchange of ideas/techniques among physics is quite useful for better understandings
 - ← An example from my experience: High-harmonic generation from the vacuum
 - ← Math. & cond-mat. ideas helped me a lot

PART I: Basics of strong-field physics

PART II: Sauter-Schwinger effect and its connection to other areas

No field

No field

Weak field

Strong field

Strong field

No field

Only minor changes

Weak field

 \Rightarrow Perturbative

⇒ Very well understood in both exp.& theor.

ex.) Electron (anomalous) magnetic moment $a \coloneqq \frac{g-2}{2}$

 \approx Electron energy shift in a weak magnetic field

 $a(\text{theor.}) = 1159652182.03 \dots \times 10^{-12}$ $a(\text{exp.}) = 1159652180.73 \dots \times 10^{-12}$ [Aoyama, Kinoshita, Nio (2017)]

If field becomes strong, physics becomes totally different & nontrivial

<u>When is field "strong" ?</u>

Strong-field condition:

To significantly modify the original system with typical energy Δ ,

the field must be more energetic than Δ

 \Rightarrow Strong-field condition: $\Delta < (energy scale of the field)$

When is field "strong"?

Strong-field condition:

To significantly modify the original system with typical energy Δ ,

the field must be more energetic than $\boldsymbol{\Delta}$

 \Rightarrow Strong-field condition: $\Delta < (energy scale of the field)$

Recent availability of strong EM fields

The situation is changing:

Becoming able to create/observe strong EM fields

⇒ NOW is the best time to study physics of strong EM field (=: strong-field QED)

When $eE > m_e^2$, many non-trivial phenomena have been predicted to occur:

Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, Phys. Rept. (2023)]

Sauter (1931), Schwinger (1951)

What I like the most: Production of particles from the vacuum (Sauter-Schwinger effect)

When $eE > m_e^2$, many non-trivial phenomena have been predicted to occur:

Review: [Fedotov, Ilderton, Karbstein, King, Seipt, <u>HT</u>, Torgrimsson, Phys. Rept. (2023)]

Sauter (1931), Schwinger (1951)

What I like the most: Production of particles from the vacuum (Sauter-Schwinger effect)

When $eE > m_e^2$, many non-trivial phenomena have been predicted to occur:

Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, Phys. Rept. (2023)]

Sauter (1931), Schwinger (1951)

What I like the most: Production of particles from the vacuum (Sauter-Schwinger effect)

When $eE > m_e^2$, many non-trivial phenomena have been predicted to occur:

Review: [Fedotov, Ilderton, Karbstein, King, Seipt, <u>HT</u>, Torgrimsson, Phys. Rept. (2023)]

Sauter (1931), Schwinger (1951) What I like the most: Production of particles from the vacuum (Sauter-Schwinger effect)

PART I: Basics of strong-field physics

PART II: Sauter-Schwinger effect and its connection to other areas

<u>Similar particle production mechanisms</u> <u>appear in many other areas of physics</u>

<u>Similar particle production mechanisms</u> <u>appear in many other areas of physics</u>

The most prominent example: Landau-Zener transition in solid

- The responses of the vacuum and ground state by an external EM field should be similar
- Indeed, the particle prediction rate and the excitation rate obey the same exponential formula $\Gamma_{\text{Sauter-Schwinger}} = \# \exp[\# \frac{m^2}{eE}]$ $\Gamma_{\text{Landau-Zener}} = \# \exp[\# \frac{\Delta^2}{eE}]$

Note: Similar exponential formula holds for particle production by other strong fields as well $Strong gravitational field \Rightarrow Hawking radiation, Strong inflaton field \Rightarrow (p)reheating of the early Universe, ...$

<u>Similar particle production mechanisms</u> <u>appear in many other areas of physics</u>

The most prominent example: Landau-Zener transition in solid

- The responses of the vacuum and ground state by an external EM field should be similar
- Indeed, the particle prediction rate and the excitation rate obey the same exponential formula $\Gamma_{\text{Sauter-Schwinger}} = \# \exp[\# \frac{m^2}{eE}]$ $\Gamma_{\text{Landau-Zener}} = \# \exp[\# \frac{\Delta^2}{eE}]$

Note: Similar exponential formula holds for particle production by other strong fields as well $Strong gravitational field \Rightarrow Hawking radiation, Strong inflaton field \Rightarrow (p)reheating of the early Universe, ...$

 Sauter-Schwinger effect has not been verified yet, but Landau-Zener transition has been observed and utilized, e.g., to design devices.

⇒ Importing (exporting) ideas from (to) other areas of physics is quite useful to better understand the Sauter-Schwinger effect (or strong-field QED in general)

Example: High-harmonic generation from the vacuum

✓ Consider AC field with frequency Ω:

• Very naı̈ve expectation: photon has frequency ω same to AC field ω = Ω

Example: High-harmonic generation from the vacuum

✓ Consider AC field with frequency Ω:

- Very naı̈ve expectation: photon has frequency ω same to AC field $\omega\text{=}\Omega$

✓ Recent observation in semi-conductors

(also in many other materials)

- Naïve expectation is wrong
 - \Rightarrow Exp. observation: Plateau structure
- Theoretical formulation is still immature even in cond.-mat
 ⇒ mostly numerics, and analytical understanding is lacking

Example: High-harmonic generation from the vacuum

✓ Consider AC field with frequency Ω:

- Very naı̈ve expectation: photon has frequency ω same to AC field $\omega\text{=}\Omega$

✓ Recent observation in semi-conductors

(also in many other materials)

- Naïve expectation is wrong
 - \Rightarrow Exp. observation: Plateau structure
- Theoretical formulation is still immature even in cond.-mat
 - ⇒ mostly numerics, and <u>analytical understanding is lacking</u>

Q1: High-harmonic generation in QED from the vacuum ? Q2: Is there any nice analytical method ?

A: Yes. Mathematics helped me to answer those !

How to formulate? Typical math of strong-field QED

Roughly speaking, strong-field-QED calculations is reduced to the following:

How to formulate? Typical math of strong-field QED

Roughly speaking, strong-field-QED calculations is reduced to the following:

Solve a differential equation is purely a mathematical problem ⇒ Any good idea from mathematics ⇒ Exact WKB

Exact WKB = a nice method to solve ODE with a small parameter

[Voros (1983)] [Pham, Dillinger, Delabaere, Aoki, Koike, Takei, ...]

= "usual" WKB + Borel resum.

[Jeffery (1924)] [Wentzel (1926)] [Kramers (1926)] [Brillouin (1926)] [Ecalle (1981)]

Exact WKB = a nice method to solve ODE with a small parameter = "usual" WKB + Borel resum. [Voros (1983)] [Pham, Dillinger, Delabaere, Aoki, Koike, Takei, ...] [Jeffery (1924)] [Wentzel (1926)] [Ecalle (1981)] [Kramers (1926)] [Brillouin (1926)] A perturbation theory w.r.t. \hbar (or adiabatic approx.) • Consider $0 = [\hbar^2 \partial_t^2 + Q(t)]\phi(t) \stackrel{t \equiv \hbar\tau}{\Leftrightarrow} [\partial_\tau^2 + Q(\hbar\tau)]\phi(\tau)$ $\Rightarrow \phi_{\pm}(t;\hbar) \coloneqq \exp\left[\mp \frac{\mathrm{i}}{\hbar} \int_{t_0}^t \mathrm{d}t' \sqrt{Q(t')}\right] \times \sum_{n=0}^{\infty} \psi_{\pm,n}(t)\hbar^n$ 0th order = plane wave Perturbation w.r.t. h $\sim \exp[\mp \frac{i}{\hbar} \sqrt{Q}t]$

- WKB expansion makes sense if the perturbative part is convergent
- However, $\psi_{\pm,n} \sim n!$ in general (e.g., Airy function $Q(t) \propto t$)

 \Rightarrow WKB expansion has zero radius of convergence \Rightarrow ill-defined !!!

Exact WKB = a nice method to solve ODE with a small parameter

[Voros (1983)] [Pham, Dillinger, Delabaere, Aoki, Koike, Takei, ...]

= "usual" WKB + Borel resum.

[Ecalle (1981)]

[Jeffery (1924)] [Wentzel (1926)] [Kramers (1926)] [Brillouin (1926)]

A resummation scheme for factorially divergent ~n! series

• Consider the div. part of WKB expansion $\psi_{\pm}(t;\hbar)\coloneqq\sum_{n=0}^{\infty}\psi_{\pm,n}(t)\hbar^{n}$

① Construct "Borel transformation": $B[\psi_{\pm}](t;\eta) \coloneqq \sum_{n=1}^{\infty} \frac{\psi_{\pm,n}(t)}{n!} \eta^n$

(2) Laplace trans. gives "Borel sum": $\Psi_{\pm}(t;\hbar) \coloneqq \int_{0}^{\infty} \frac{d\eta}{\hbar} e^{-\eta/\hbar} B[\psi_{\pm}](t;\eta)$

Exact WKB = a nice method to solve ODE with a small parameter

[Voros (1983)] [Pham, Dillinger, Delabaere, Aoki, Koike, Takei, ...]

= "usual" WKB + Borel resum.

[Ecalle (1981)]

[Jeffery (1924)] [Wentzel (1926)] [Kramers (1926)] [Brillouin (1926)]

A resummation scheme for factorially divergent ~n! series

• Consider the div. part of WKB expansion $\psi_{\pm}(t;\hbar)\coloneqq\sum_{n=0}^{\infty}\psi_{\pm,n}(t)\hbar^{n}$

① Construct "Borel transformation": $B[\psi_{\pm}](t;\eta) \coloneqq \sum_{n=1}^{\infty} \frac{\psi_{\pm,n}(t)}{n!} \eta^n$

(2) Laplace trans. gives "Borel sum": $\Psi_{\pm}(t;\hbar) \coloneqq \int_{0}^{\infty} \frac{d\eta}{\hbar} e^{-\eta/\hbar} B[\psi_{\pm}](t;\eta)$

• Ψ_{\pm} is well-defined and is a natural analytic continuation of ψ_{\pm} \Leftarrow Indeed, reduces to the original result if you adimit $\sum \int = \int \sum \Psi_{\pm} = \int_{0}^{\infty} \frac{\mathrm{d}\eta}{\hbar} \, \mathrm{e}^{-\eta/\hbar} \sum_{n=1}^{\infty} \frac{\psi_{\pm,n}(t)}{n!} \eta^{n} \sim \sum_{n=1}^{\infty} \frac{\psi_{\pm,n}(t)}{n!} \int_{0}^{\infty} \frac{\mathrm{d}\eta}{\hbar} \, \mathrm{e}^{-\eta/\hbar} \eta^{n} = \sum_{n=1}^{\infty} \psi_{\pm,n}(t) \hbar^{n}$

$\Rightarrow \Psi_{\pm}$ gives a well-defined version of the WKB solution !

• Note: in practice, some approximations shall be used in Borel resum...

How to formulate? Typical math of strong-field QED

• Typically, a bi-linear $\phi^{\dagger} X \phi \leftarrow$ For HHG, current $J \sim e \phi^{\dagger} \hat{p} \phi$ or $J \sim \overline{\psi} \gamma \psi$ (for fermions)

Application to high-harmonic generation (1/2)

<u>Setup</u>: A monochromatic E-field $E(t) = E_0 \cos(\Omega t)$ applied onto QED vacuum

What I did: Compute harmonic spectrum numerically and analytically with WKB

Application to high-harmonic generation (1/2)

What I did: Compute harmonic spectrum numerically and analytically with WKB

High harmonics appears also in QED when field becomes strong !

Application to high-harmonic generation (1/2)

What I did: Compute harmonic spectrum numerically and analytically with WKB

- High harmonics appears also in QED when field becomes strong !
- WKB is good in the plateau regime (i.e., before the spectrum drops)

Application to high-harmonic generation (2/2)

- WKB works more in the deep non-perturbative regime $E_0 \rightarrow \text{large}, \Omega \rightarrow \text{small}$
- Demonstration: magnitude of the harmonic peak at $\omega/\Omega = 9$

- Lessons:
 - (1) WKB makes it easier to analyze the non-perturbative regime
 - (2) Saturation & oscillation of the harmonic intensity
 - \Rightarrow consistent with recent semi-conductor exp. [Xia et al., (2020)] (but only *E*₀-dep. is measured and Ω-dep. is our prediction)

PART I: Basics of strong-field physics

PART II: Sauter-Schwinger effect and its connection to other areas

(QED = quantum electrodynamics)

Brief introduction to Strong-field QED

= an area to study what happens by a super strong light

(= electromagnetic field)

PART I: Basics of strong-field QED

• Why interesting \Rightarrow Unexplored non-perturbative regime of physics

Nontrivial phenomena that we've never seen e.g. Vacuum decay, Birefringence, New phase of matter, ...

• Why timely ⇒ Recent availability of strong fields e.g. High-power laser, Magnetar, heavy-ion collisions, ...

PART II: Sauter-Schwinger effect and its connection to other areas

- An interdisciplinary topic: Analogues in many other areas of physics
 ⇒ Exchange of ideas/techniques among physics is quite useful for better understandings
 e.g. Landau-Zener (cond.-mat), Hawing radiation (gravity), reheating in the early Universe (cosmology), ...
- Mathematically, the problem is essentially solving a differential equation
 ⇒ Mathematical techniques to solve differential equations are quite useful
- As such an example: High-harmonic generation from the vacuum

← Based on (exact) WKB in mathematics and an idea in cond.-mat [HT, Fujimori, Misumi, Nitta, Sakai, (2021)] [HT, Hongo, Ikeda, (2021)]

Intuitive picture

FIG. 1. (a) A typical Stokes graph, composed of Stokes lines (blue lines) and turning points (red points), and (b) the corresponding physical processes during the real-time evolution.