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P I a n (QED = quantum electrodynamics)
Brief introduction to Strong-field QED

= an area to study what happens by a super strong light

(= electromagnetic field)

PART I: Basics of strong-field QED

+ Why interesting = Unexplored non-perturbative regime of physics

e.g. Vacuum decay, Birefringence,

Nontrivial phenomena that we've never seen New phase of matter, ...

- Why timely = Recent availability of strong fields e.g. High-power laser, Magnetar,
heavy-ion collisions, ...

PART ll: Sauter-Schwinger effect and its connection to other areas

+ An interdisciplinary topic
= Exchange of ideas/techniques among physics is quite useful for better understandings
< An example from my experience: High-harmonic generation from the vacuum

< Math. & cond-mat. ideas helped me a lot

[HT, Fujimori, Misumi, Nitta, Sakai, (2021)] [HT, Hongo, lkeda, (2021)]



PART I: Basics of strong-field physics



What if field becomes strong ?
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Only minor changes

= Perturbative

= Very well understood
in both exp.& theor.

. -2
ex.) Electron (anomalous) magnetic moment a = gT

= Electron energy shift in a weak magnetic field

a(theor.) = 1159652182.03 ... x 10~1?
a(exp.) = 1159652180.73...x 10712 [Aoyama, Kinoshita, Nio (2017)]



What if field becomes strong ?

initial

No field Weak field Strong field
Only minor changes Big change !
= Perturbative = Non-Perturbative
= Very well understood = Not understood well

in both exp.& theor.
g—2

ex.) Electron (anomalous) magnetic moment a = =—

= Electron energy shift in a weak magnetic field

a(theor.) = 1159652182.03 ... x 10~1?
a(exp.) = 1159652180.73...x 10712 [Aoyama, Kinoshita, Nio (2017)]

If field becomes strong, physics becomes totally different & nontrivial




When is field “strong” ?

- Strong-field condition:

To significantly modify the original system with typical energy A,

the field must be more energetic than A

= Strong-field condition: A < (energy scale of the field)




When is field “strong” ?

- Strong-field condition:

To significantly modify the original system with typical energy A,

the field must be more energetic than A

= Strong-field condition: A < (energy scale of the field)

- Estimate of the minimum field strength:
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Recent availability of strong EM fields

The situation is changing:
Becoming able to create/observe strong EM fields

= NOW is the best time to study physics of strong EM field
=: strong-field QED)

High-power laser Systems with extreme conditions

Adopted from [Mourou, Tajima, Bulanov (2006)]

Starting soon
[>10%*W/cm? :

S ield (eE/m?% > 1 ~ . .
" WFJEE%EMI Gy =1, e.g. ELI@Europe|| . Heavy-ion collisions + Magnetar
L Zet - g
10 i L‘GDLl o ;JPHI 0N CIOsS-sechon
VA . 2
i _ ) // Yoon et al., (2021) gi- o 35(140 M:V)
10+ Laser Intensity Limit; [ I“T-- oy = [j / 3 W/cm*)
per cor of laser medium) ¢ 0 Current stro ngeSt 2
S > -103w/m?
Relativistic Opics: v,.~c CoRel5 @ Korea P
I R beri i eB < (1MBV)2 ~ 1011 T

Focused Intensity ( VW/cm 2 )

(I ~102° W/cm?)

Bound Electrons: E = : Yanovsky et al., (2008)

[~10°7EW /em b ion by IXPE, XL-Calibur (2022
HERUCLES @ USA At RHIC (2000~), LHC (2012~) Observation by , XL-Calibur (2022~)

Press release by Tamagawa lab. (2022)

1960 1970 1980 1960 2000 2010 2020




What can happen with strong EM field ?

When eE > mZ%, many non-trivial phenomena have been predicted to occur:
Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, Phys. Rept. (2023)]

. . . Sauter (1931), Schwinger (1951)
- What | like the most: Production of particles from the vacuum (sauter-schwinger effect) —

A few examples among many others (don’t explain; ask later if interested)

160~

Birefringence of 1  Hadron mass change . QCD phase diagram
photon in vacuum | Photon splitting - Photon scattering | (for eB > A%.p) | (for eB > A% p)
‘ ‘ Ry . | Ty [D'Elia et al. (2022)]

O O

BEAE £n
ICEL.»g; "2?{ RERT . CITE




What can happen with strong EM field ?
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Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, Phys. Rept. (2023)]

. . . Sauter (1931), Schwinger (1951)
- What | like the most: Production of particles from the vacuum (sauter-schwinger effect) —

Our vacuum is not an empty space,
but has a structure similar to semi-conductor

(@ep) Vacuum 1
CAN observe
.| energy
Dirac (1930) ‘ momentum I gap =2m =Z
Dirac sea j CANNOT observe
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What can happen with strong EM field ?

When eE > mZ%, many non-trivial phenomena have been predicted to occur:
Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, Phys. Rept. (2023)]

. . . Sauter (1931), Schwinger (1951)
- What | like the most: Production of particles from the vacuum (sauter-schwinger effect) —

Our vacuum is not an empty space, Then, real particles will be produced out of
but has a structure similar to semi-conductor the vacuum by strong enough field
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What can happen with strong EM field ?

When eE > mZ%, many non-trivial phenomena have been predicted to occur:
Review: [Fedotov, llderton, Karbstein, King, Seipt, HT, Torgrimsson, Phys. Rept. (2023)]

Sauter (1931), Schwinger (1951)
What | like the most: Production of particles from the vacuum (sauter-schwinger effect)

Our vacuum is not an empty space, Then, real particles will be produced out of
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PART ll: Sauter-Schwinger effect and its connection to other areas



Similar particle production mechanisms
appear in many other areas of physics




— The most prominent example: Landau-Zener transition in solid

Similar particle production mechanisms
appear in many other areas of physics

Landau (1932), Zener (1932)

e «Qep) Vacuum  --------- . ---- Ground state of solids ...
1 Conduction
| i band
gap =2m N E = i
I | V.S. | I = Fermi surface |
i i gap = A
| ! =0(1 eV)
: | Valence
Dirac sea ! ! j band

______________________________________________________________________________________________________

+ The responses of the vacuum and ground state by an external EM field should be similar

* Indeed, the particle prediction rate and the excitation rate obey the same exponential formula
2 2

I'sauter—schwinger = # exp[ # m /eE] MLandau-zener = #exp[# A /eE]

Note: Similar exponential formula holds for particle production by other strong fields as well
Strong gravitational field = Hawking radiation, Strong inflaton field = (p)reheating of the early Universe, ...
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— The most prominent example: Landau-Zener transition in solid
Landau (1932), Zener (1932)

e «Qep) Vacuum  --------- . ---- Ground state of solids ...
1 Conduction
| i band
gap =2m N E = i
I | V.S. | I = Fermi surface |
i i gap = A
| ! =0(1 eV)
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Dirac sea ! ! j band

______________________________________________________________________________________________________

+ The responses of the vacuum and ground state by an external EM field should be similar
* Indeed, the particle prediction rate and the excitation rate obey the same exponential formula
2 2
I'sauter—schwinger = # exp[ # m /eE] MLandau-zener = #exp[# A /eE]

Note: Similar exponential formula holds for particle production by other strong fields as well
Strong gravitational field = Hawking radiation, Strong inflaton field = (p)reheating of the early Universe, ...

- Sauter-Schwinger effect has not been verified yet,
but Landau-Zener transition has been observed and utilized, e.g., to design devices.

= Importing (exporting) ideas from (to) other areas of physics is quite useful to
better understand the Sauter-Schwinger effect (or strong-field QED in general)




Example: High-harmonic generation from the vacuum

Pair production by E-field leads to emission of photons

N - L

Pair production Photon emission

v Consider AC field with frequency Q:
* Very naive expectation: photon has frequency w same to AC field w=Q



Example: High-harmonic generation from the vacuum
Pair production by E-field leads to emission of photons
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Dirac sea
Pair production Photon emission

Vacuum

Energy (eV)
3 5 7

5 E
" [Ghimire'et al., (2011)]
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v Consider AC field with frequency Q:
* Very naive expectation: photon has frequency w same to AC field w=Q

v Recent observation in semi-conductors

(also in many other materials)

* Naive expectation is wrong
= Exp. observation: Plateau structure

» Theoretical formulation is still immature even in cond.-mat
= mostly numerics, and analytical understanding is lacking o




Example: High-harmonic generation from the vacuum
Pair production by E-field leads to emission of photons

N

Dirac sea
v Consider AC field with frequency Q:
* Very naive expectation: photon has frequency w same to AC field w=Q

Pair production {r:)::n.:n::i;\n

Energy (eV)

Vacuum

3 5

7 9
" [Ghimire'et al., (2011)]

109 —

v Recent observation in semi-conductors

(also in many other materials)

* Naive expectation is wrong
= Exp. observation: Plateau structure

* Theoretical formulation is still immature even in cond.-mat

= mostly numerics, and analytical understanding is lacking

Q1: High-harmonic generation in QED from the vacuum ?
Q2: Is there any nice analytical method ?

A: Yes. Mathematics helped me to answer those!




How to formulate ? Typical math of strong-field QED

Roughly speaking, strong-field-QED calculations is reduced to the following:

u

Step 1: Solve a differential equation (to obtain wavefunction ®

The simplest example: Klein-Gordon equation with a time-dependent potential

0= [;’126,;2 + Q(vﬂcp(t) e
something small Potential wavefunction

(Planck constant) (= info. of strong field)

Step 2: Analyze the wavefunction (to predict sthg measurable O[®] =

+ O depends on what you want to measure

- Typically, a bi-linear ¢ X¢




How to formulate ? Typical math of strong-field QED

Roughly speaking, strong-field-QED calculations is reduced to the following:

u

Step 1: Solve a differential equation (to obtain wavefunction ®

The simplest example: Klein-Gordon equation with a time-dependent potential

— 21732
' [? at ' Q(‘ggb(t) decode
something small Potential wavefunction
(Planck constant) (= info. of strong field)

Step 2: Analyze the wavefunction (to predict sthg measurable O[®] =

G
+ O depends on what you want to measure

- Typically, a bi-linear ¢ X¢

Solve a differential equation is purely a mathematical problem
= Any good idea from mathematics
= Exact WKB




Exact WKB method

Exact WKB = anice method to solve ODE with a small parameter
Pliﬁgoni,(g)sialﬁiger, Delabaere, —_ "usuaI" WKB + BO rEI resum.

Aoki, Koike, Takei, ... Ueffery (1924)] [Wentzel (1926)] [Ecalle (1981)]
[Kramers (1926)] [Brillouin (1926)]
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A perturbation theory w.r.t. i (or adiabatic approx.)

. Consider 0 = [#232 + Q(0)]¢p(t) ‘S [92 + Q(AD)] (D)

= ¢ (61) = exp [T [; de'VQEN] X T (OB

0th order = plane wave

~ exp[¢%\/5t]




Exact WKB method

Exact WKB = anice method to solve ODE with a small parameter
Pliﬁgon:,(g)sialﬁiger, Delabaere, — "usuaI" WKB + BO rEI resum.

Aoki, Koike, Take, ... Ueffery (1924)] [Wentzel (1926)] [Ecalle (1981)]
[Kramers (1926)] [Brillouin (1926)]

A perturbation theory w.r.t. i (or adiabatic approx.)

. Consider 0 = [#232 + Q(0)]¢p(t) ‘S [92 + Q(AD)] (D)

= ¢ (61) = exp [T [; de'VQEN] X T (OB

0th order = plane wave

~ exp[¢%\/5t]

- WKB expansion makes sense if the is convergent
- However, y ,~n!in general (e.g. Airy function Q(¢) « t)

= WKB expansion has zero radius of convergence = ill-defined !!!




Exact WKB method

Exact WKB = anice method to solve ODE with a small parameter
E\I!E;ﬁ,(;)?lﬁiger, Delabaere, — "usuaI" WKB + BO rEI resum.
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A resummation scheme for factorially divergent ~n! series

- Consider the div. part of WKB expansion 4. (t; &) == X0 Y+ (E)RA™
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Exact WKB method

Exact WKB = anice method to solve ODE with a small parameter
E\I!ﬁ;ﬁ,(;)aﬁiger, Delabaere, - "usuaI" WKB + Borel resum.

Aoki, Koike, Takei, ...] [effery (1924)] [Wentzel (1926)] (Ecalle (1981)]
[Kramers (1926)] [Brillouin (1926)]

A resummation scheme for factorially divergent ~n! series

- Consider the div. part of WKB expansion ¢, (t; k) = Yo Y+ (t)A"

(D Construct “Borel transformation”: B[y, ](t;n) = z lpi’n,(t) n"
- n.

n
“d
@ Laplace trans. gives “Borel sum”. W, (t; h) = j il e B[y, ](t;n)

0
- ¥, is well-defined and is a natural analytic continuation of ¢,

< Indeed, reduces to the original result if you adimit 3/ = [ ¥

Lp+=’[0°°d777e_n/h l/)+n(t) zl/)+n(t) d77 _n/h n_zl/)+n(t)hn

= W, gives a well- deflned version of the WKB solutlon !

- Note: in practice, some approximations shall be used in Borel resum...




How to formulate ? Typical math of strong-field QED

n

Step 1: Solve a differential equation (to obtgin wavefunction ®

The simplest example: Klein-Gordon eg e-dependent potential

o [?Zatz ' Q('ﬂqa(t?\ decode
something small potential wave

(Planck constant)

Step 2: Analyze the wavefunction (to predict sthg measurable O[®] = * )

- O depends on what you want to measure
« Typically, a bi-linear ¢TX¢ < For HHG, current ] ~ e¢p™ pp or J ~ yyi (for fermions)




Application to high-harmonic generation (1.2

Setup: A monochromatic E-field E(t) = E, cos(Qt) applied onto QED vacuum
What | did: Compute harmonic spectrum numerically and analytically with WKB
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-+ High harmonics appears also in QED when field becomes strong !



Application to high-harmonic generation (1.2

Setup: A monochromatic E-field E(t) = E, cos(Qt) applied onto QED vacuum
What I did: Compute harmonic spectrum numerically and analytically with WKB
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 High harmonics appears also in QED when field becomes strong !

- WKB is good in the plateau regime (i.e., before the spectrum drops)



Application to high-harmonic generation (2.2

- WKB works more in the deep non-perturbative regime E, — large, Q@ — small

"
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- Demonstration: magnitude of the harmonic peak at w/Q = 9 ;:‘WWWMWWW”

Dependence on strength E, Dependence on frequency Q
analytical with WKB
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- Lessons:

(1) WKB makes it easier to analyze the non-perturbative regime

(2) Saturation & oscillation of the harmonic intensity
= consistent with recent semi-conductor exp. [Xiaetal, (2020)]

(but only E,-dep. is measured and Q-dep. is our prediction)



PART I: Basics of strong-field physics

PART Il: Sauter-Schwinger effect and its connection to other areas



Summary
Brief introduction to Strong-field QED

= an area to study what happens by a super strong light

(= electromagnetic field)

(QED = quantum electrodynamics)

PART I: Basics of strong-field QED

+ Why interesting = Unexplored non-perturbative regime of physics

. , e.g. Vacuum decay, Birefringence,
Nontrivial phenomena that we've never seen New phase of matter, ...

- Why timely = Recent availability of strong fields e.g. High-power laser, Magnetar,
heavy-ion collisions, ...

PART Il: Sauter-Schwinger effect and its connection to other areas

+ Aninterdisciplinary topic: Analogues in many other areas of physics
= Exchange of ideas/techniques among physics is quite useful for better understandings

e.g. Landau-Zener (cond.-mat), Hawing radiation (gravity), reheating in the early Universe (cosmology), ...

- Mathematically, the problem is essentially solving a differential equation
= Mathematical techniques to solve differential equations are quite useful

* As such an example: High-harmonic generation from the vacuum

< Based on (exact) WKB in mathematics and an idea in cond.-mat
[HT, Fujimori, Misumi, Nitta, Sakai, (2021)] [HT, Hongo, lIkeda, (2021)]






Intuitive picture

pair prod.

pair prod.

! palr prod. acceleratlor}“ / inter Fcl‘ﬁ"m)au:<:eleral;n:nthm / interference)

FIG. 1. (a) A typical Stokes graph, composed of Stokes lines
(blue lines) and turning points (red points), and (b) the cor-
responding physical processes during the real-time evolution.
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