Introduction to strong-field QED

Hidetoshi Taya

(an SPDR in iTHEMS, studying high-energy particle & nuclear physics)

Brief introduction to Strong-field QED

= an area to study what happens by a super strong light

(= electromagnetic field)

PART I: Basics of strong-field QED

Why interesting \Rightarrow Unexplored non-perturbative regime of physics

Nontrivial phenomena that we've never seen e.g. Vacuum decay, Birefringence, New phase of matter, ...

• Why timely ⇒ Recent availability of strong fields e.g. High-power laser, Magnetar, heavy-ion collisions, …

PART II: Sauter-Schwinger effect and its connection to other areas

- ・ An interdisciplinary topic
	- ⇒ Exchange of ideas/techniques among physics is quite useful for better understandings
		- \Leftarrow An example from my experience: High-harmonic generation from the vacuum
			- \Leftarrow Math. & cond-mat. ideas helped me a lot

PART I: Basics of strong-field physics

PART II: Sauter-Schwinger effect and its connection to other areas

No field

No field Weak field Strong field

No field Weak field Strong field

Only minor changes

⇒ Perturbative

⇒ Very well understood in both exp.& theor.

ex.) Electron (anomalous) magnetic moment $a = \frac{g-2}{2}$ 2

≈ Electron energy shift in a weak magnetic field

 $a(\text{exp.})$ = 1159652180.73 … $\times 10^{-12}$ [Aoyama, Kinoshita, Nio (2017)] a (theor.) = 1159652182.03 ... × 10⁻¹²

If field becomes strong, physics becomes totally different & nontrivial

When is field "strong" ?

Strong-field condition:

To significantly modify the original system with typical energy Δ,

the field must be more energetic than Δ

⇒ **Strong-field condition:** Δ < (energy scale of the field)

When is field "strong" ?

Strong-field condition:

To significantly modify the original system with typical energy Δ,

the field must be more energetic than Δ

⇒ **Strong-field condition:** Δ < (energy scale of the field)

Recent availability of strong EM fields

The situation is changing:

Becoming able to create/observe strong EM fields

⇒ NOW is the best time to study physics of strong EM field (=: strong-field QED)

When $eE > m_e^2$, many non-trivial phenomena have been predicted to occur:
Patiaus Fedetau Harten Karkstein King Seint HT Terrimeers Phys Pert (2003)

Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, Phys. Rept. (2023)]

Sauter (1931), Schwinger (1951)

What I like the most: Production of particles from the vacuum (Sauter-Schwinger effect)

When $eE > m_e^2$, many non-trivial phenomena have been predicted to occur:
Patiaus Fedetau Harten Karkstein King Seint HT Terrimeers Phys Pert (2003)

Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, Phys. Rept. (2023)]

Sauter (1931), Schwinger (1951)

What I like the most: Production of particles from the vacuum (Sauter-Schwinger effect)

When $eE > m_e^2$, many non-trivial phenomena have been predicted to occur:
Review: [Fedotov, Ilderton, Karbstein, King, Seipt, <u>HT</u>, Torgrimsson, Phys. Rept. (2023)]

Sauter (1931), Schwinger (1951)

What I like the most: Production of particles from the vacuum (Sauter-Schwinger effect)

When $eE > m_e^2$, many non-trivial phenomena have been predicted to occur:
Review: [Fedotov, Ilderton, Karbstein, King, Seipt, <u>HT</u>, Torgrimsson, Phys. Rept. (2023)]

What I like the most: Production of particles from the vacuum (Sauter-Schwinger effect) Sauter (1931), Schwinger (1951)

PART I: Basics of strong-field physics

PART II: Sauter-Schwinger effect and its connection to other areas

Similar particle production mechanisms appear in many other areas of physics

Similar particle production mechanisms appear in many other areas of physics

The most prominent example: Landau-Zener transition in solid

- The responses of the vacuum and ground state by an external EM field should be similar
- Indeed, the particle prediction rate and the excitation rate obey the same exponential formula $\Gamma_{\text{Sauter-Schwinger}} = \#\exp[\# m^2 /_{eE}]$ $\Gamma_{\text{Landau-Zener}} = \#\exp[\# \Delta^2 /_{eE}]$

Note: Similar exponential formula holds for particle production by other strong fields as well Strong gravitational field ⇒ Hawking radiation, Strong inflaton field ⇒ (p)reheating of the early Universe, …

Similar particle production mechanisms appear in many other areas of physics

The most prominent example: Landau-Zener transition in solid

- The responses of the vacuum and ground state by an external EM field should be similar
- Indeed, the particle prediction rate and the excitation rate obey the same exponential formula $\Gamma_{\text{Sauter-Schwinger}} = \#\exp[\# m^2 /_{eE}]$ $\Gamma_{\text{Landau-Zener}} = \#\exp[\# \Delta^2 /_{eE}]$

Note: Similar exponential formula holds for particle production by other strong fields as well Strong gravitational field ⇒ Hawking radiation, Strong inflaton field ⇒ (p)reheating of the early Universe, …

・ Sauter-Schwinger effect has not been verified yet, but Landau-Zener transition has been observed and utilized, e.g., to design devices.

⇒ Importing (exporting) ideas from (to) other areas of physics is quite useful to better understand the Sauter-Schwinger effect (or strong-field QED in general)

Example: High-harmonic generation from the vacuum

✔ Consider AC field with frequency Ω:

・ Very naïve expectation: photon has frequency ω same to AC field ω=Ω

Example: High-harmonic generation from the vacuum

✔ Consider AC field with frequency Ω:

・ Very naïve expectation: photon has frequency ω same to AC field ω=Ω

✔ Recent observation in semi-conductors

(also in many other materials)

- **・** Naïve expectation is wrong
	- ⇒ Exp. observation: Plateau structure
- \Rightarrow mostly numerics, and analytical understanding is lacking **・** Theoretical formulation is still immature even in cond.-mat

Example: High-harmonic generation from the vacuum

✔ Consider AC field with frequency Ω:

・ Very naïve expectation: photon has frequency ω same to AC field ω=Ω

✔ Recent observation in semi-conductors

(also in many other materials)

- **・** Naïve expectation is wrong
	- ⇒ Exp. observation: Plateau structure
- **・** Theoretical formulation is still immature even in cond.-mat
	- ⇒ mostly numerics, and analytical understanding is lacking

Q1: High-harmonic generation in QED from the vacuum ? Q2: Is there any nice analytical method ?

A: Yes. Mathematics helped me to answer those !

How to formulate ? Typical math of strong-field QED

Roughly speaking, strong-field-QED calculations is reduced to the following:

How to formulate ? Typical math of strong-field QED

Roughly speaking, strong-field-QED calculations is reduced to the following:

Solve a differential equation is purely a mathematical problem ⇒ Any good idea from mathematics ⇒ Exact WKB

Exact WKB = a nice method to solve ODE with a small parameter

[Voros (1983)] [Pham, Dillinger, Delabaere,

= "usual" WKB + Borel resum.

Aoki, Koike, Takei, ...]

[[effery (1924)] [Wentzel (1926)] [Kramers (1926)] [Brillouin (1926)]

[Ecalle (1981)]

= "usual" WKB + Borel resum. [Voros (1983)] [Pham, Dillinger, Delabaere, Aoki, Koike, Takei, ...]

[Jeffery (1924)] [Wentzel (1926)] [Kramers (1926)] [Brillouin (1926)] [Ecalle (1981)] $\Rightarrow \phi_{\pm}(t; \hbar) := \left| \exp \left[\mp \frac{1}{\hbar} \int_{t_0}^t dt' \sqrt{Q(t')} \right] \right| \times \sum_{n=0}^{\infty} \psi_{\pm,n}(t) \hbar^n$ $0th$ order = plane wave $\sim \exp[\mp \frac{1}{\hbar} \sqrt{Q} t]$ Perturbation w.r.t. \hbar **A perturbation theory w.r.t.** ℏ **(or adiabatic approx.)** • Consider $0 = [\hbar^2 \partial_t^2 + Q(t)]\phi(t) \stackrel{t = \hbar \tau}{\Leftrightarrow} [\partial_t^2 + Q(\hbar \tau)]\phi(\tau)$ **Exact WKB = a nice method to solve ODE with a small parameter**

$0th$ order = plane wave $\sim \exp[\mp \frac{1}{\hbar} \sqrt{Q} t]$ Perturbation w.r.t. \hbar **A perturbation theory w.r.t.** ℏ **(or adiabatic approx.)** • Consider $0 = [\hbar^2 \partial_t^2 + Q(t)]\phi(t) \stackrel{t = \hbar \tau}{\Leftrightarrow} [\partial_t^2 + Q(\hbar \tau)]\phi(\tau)$ $\Rightarrow \phi_{\pm}(t; \hbar) := \left| \exp \left[\mp \frac{1}{\hbar} \int_{t_0}^t dt' \sqrt{Q(t')} \right] \right| \times \sum_{n=0}^{\infty} \psi_{\pm,n}(t) \hbar^n$ [Voros (1983)] [Pham, Dillinger, Delabaere, Aoki, Koike, Takei, ...]

[Jeffery (1924)] [Wentzel (1926)] [Kramers (1926)] [Brillouin (1926)] [Ecalle (1981)] **Exact WKB = a nice method to solve ODE with a small parameter = "usual" WKB + Borel resum.**

- WKB expansion makes sense if the perturbative part is convergent
- However, $\psi_{+,n} \sim n!$ in general (e.g., Airy function $Q(t) \propto t$)

⇒ WKB expansion has zero radius of convergence ⇒ ill-defined !!!

Exact WKB = a nice method to solve ODE with a small parameter

[Voros (1983)] [Pham, Dillinger, Delabaere, Aoki, Koike, Takei, ...] Aoki, Koike, Takei, ...]

= "usual" WKB + Borel resum.

 ψ_{\pm}] $(t; \eta) \coloneqq \sum \limits_{k=1}^{d}$

 $\Psi_{\pm}(t;h) \coloneqq \int$

 $\mathop{.}\nolimits^{n}$

 ∞ d η

 $\boldsymbol{0}$

 $\psi_{\pm,n}(t)$

Ecalle (1981)] [wentzer (1926)]

[Ecalle (1981)] [Ecalle (1981)]

A resummation scheme for factorially divergent ~n! series

• Consider the div. part of WKB expansion $\psi_{\pm}(t; \hbar) \coloneqq \sum_{n=0}^{\infty} \psi_{\pm,n}(t) \hbar^n$ ∞

(1) Construct "Borel transformation": $B[\psi_{\pm}](t;\eta) \coloneqq \sum_{n} \frac{\varphi_{\pm,n}(t)}{n!} \eta^n$

② Laplace trans. gives "Borel sum": $\Psi_{\pm}(t; \hbar) \coloneqq \int_0^{\frac{\pi}{\hbar}} e^{-\eta/\hbar} B[\psi_{\pm}](t; \eta)$

Exact WKB = a nice method to solve ODE with a small parameter

[Voros (1983)] [Pham, Dillinger, Delabaere, Aoki, Koike, Takei, ...] Aoki, Koike, Takei, ...]

= "usual" WKB + Borel resum.

 $\mathop{.}\nolimits^{n}$

 $^{\infty}$ d η

[Britaners (1924)] [Wentzer (1926)]
[Kramers (1926)] [Brillouin (1926)]

A resummation scheme for factorially divergent ~n! series

• Consider the div. part of WKB expansion $\psi_{\pm}(t; \hbar) \coloneqq \sum_{n=0}^{\infty} \psi_{\pm,n}(t) \hbar^n$

 ψ_{\pm}] $(t; \eta) \coloneqq \sum_{\mu}$ ∞ $\psi_{\pm,n}(t)$ (1) Construct "Borel transformation": $B[\psi_{\pm}](t;\eta) \coloneqq \sum_{n} \frac{\varphi_{\pm,n}(t)}{n!} \eta^n$

 $\Psi_{\pm}(t;h) \coloneqq \int$ ② Laplace trans. gives "Borel sum": $\Psi_{\pm}(t; \hbar) \coloneqq \int_0^{\frac{\pi}{\hbar}} e^{-\eta/\hbar} B[\psi_{\pm}](t; \eta)$

 $\boldsymbol{0}$ \cdot Ψ_{+} is well-defined and is a natural analytic continuation of ψ_{+} ∞ ∞ ∞ \Leftarrow Indeed, reduces to the original result if you adimit $\sum \int = \int \sum$

$$
\Psi_{\pm} = \int_0^{\infty} \frac{d\eta}{\hbar} \ e^{-\eta/\hbar} \sum_n^{\infty} \frac{\psi_{\pm,n}(t)}{n!} \eta^n \sim \sum_n^{\infty} \frac{\psi_{\pm,n}(t)}{n!} \int_0^{\infty} \frac{d\eta}{\hbar} \ e^{-\eta/\hbar} \eta^n = \sum_{n=0}^{\infty} \psi_{\pm,n}(t) \hbar^n
$$

\Rightarrow Ψ_+ gives a well-defined version of the WKB solution !

・ Note: in practice, some approximations shall be used in Borel resum…

How to formulate ? Typical math of strong-field QED

• Typically, a bi-linear $\phi^{\dagger} X \phi \Leftarrow$ For HHG, current $J \sim e \phi^{\dagger} \hat{p} \phi$ or $J \sim \bar{\psi} \gamma \psi$ (for fermions)

Application to high-harmonic generation (1/2)

<u>Setup</u>: A monochromatic E-field $E(t) = E_0 \cos(\Omega t)$ applied onto QED vacuum

What I did: Compute harmonic spectrum **numerically** and **analytically with WKB**

Application to high-harmonic generation (1/2)

What I did: Compute harmonic spectrum **numerically** and **analytically with WKB**

Application to high-harmonic generation (1/2)

What I did: Compute harmonic spectrum **numerically** and **analytically with WKB**

- ・ High harmonics appears also in QED when field becomes strong !
-

Application to high-harmonic generation (2/2)

- \cdot WKB works more in the deep non-perturbative regime $E_0 \rightarrow \text{large}, \Omega \rightarrow \text{small}$
- \cdot Demonstration: magnitude of the harmonic peak at $\omega/\Omega = 9$

・ **Lessons:**

(1) WKB makes it easier to analyze the non-perturbative regime

- (2) Saturation & oscillation of the harmonic intensity
	- \Rightarrow consistent with recent semi-conductor exp. [Xia et al., (2020)] (but only E_0 -dep. is measured and Ω -dep. is our prediction)

PART I: Basics of strong-field physics

PART II: Sauter-Schwinger effect and its connection to other areas

(QED = quantum electrodynamics)

Brief introduction to Strong-field QED

= an area to study what happens by a super strong light

(= electromagnetic field)

PART I: Basics of strong-field QED

Why interesting \Rightarrow Unexplored non-perturbative regime of physics

Nontrivial phenomena that we've never seen e.g. Vacuum decay, Birefringence, New phase of matter, ...

• Why timely ⇒ Recent availability of strong fields e.g. High-power laser, Magnetar, heavy-ion collisions, …

PART II: Sauter-Schwinger effect and its connection to other areas

- e.g. Landau-Zener (cond.-mat), Hawing radiation (gravity), reheating in the early Universe (cosmology), … ・ An interdisciplinary topic: Analogues in many other areas of physics ⇒ Exchange of ideas/techniques among physics is quite useful for better understandings
- ・ Mathematically, the problem is essentially solving a differential equation ⇒ Mathematical techniques to solve differential equations are quite useful
- ・ As such an example: High-harmonic generation from the vacuum

 \Leftarrow Based on (exact) WKB in mathematics and an idea in cond.-mat [HT, Fujimori, Misumi, Nitta, Sakai, (2021)] [HT, Hongo, Ikeda, (2021)]

Intuitive picture

FIG. 1. (a) A typical Stokes graph, composed of Stokes lines (blue lines) and turning points (red points), and (b) the corresponding physical processes during the real-time evolution.