Opportunities of strong-field physics In middle-energy heavy-ion collisions

Hidetoshi Taya (RIKEN iTHEMS)

Plan

Middle-energy heavy-ion collisions $\sqrt{s_{NN}} = O(1\text{-}10 \text{ GeV})$ may be interesting **not only to QCD but also to strong-field physics**

- **・** Estimation of EM field strength and spacetime volume with a hadron transport model (JAM) \Rightarrow Strong O(30 MeV) and large spacetime volume O((20 fm)⁴)
	- ⇒ A nice setup to study strong-field QED. Non-negligible to hadronic/QCD processes as well.
- **1. Brief review of strong-field physics**

2. Strong EM field at high-energy heavy-ion collisions

・ Clarify relationship between "non-perturbativeness" and strength and lifetime of EM field

3. Strong EM field at middle-energy heavy-ion collisions

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

- ・ Estimation of EM field profiles with JAM
- **4. An example of strong-field phenomenon: Vacuum decay and modification to photon propagation**

[HT, Ironside (Curtin), in progress]

1. Brief review of strong-field physics

2. Strong EM field at high-energy heavy-ion collisions

3. Strong EM field at middle-energy heavy-ion collisions

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

4. An example of strong-field phenomenon: Vacuum decay and modification to photon propagation

[HT, Ironside (Curtin), in progress]

5. Summary

Vacuum (=No EM field)

Vacuum (=No EM field) **Weak EM field** $(eF/m^2 \lesssim 1)$

Strong EM field $(eF/m^2 \geq 1)$

Vacuum (=No EM field) **Weak EM field** $(eF/m^2 \lesssim 1)$

Strong EM field $(eF/m^2 \geq 1)$

Almost the same

⇒ Perturbative

⇒ Understood well

ex) Electron anomalous magnetic moment $a \coloneqq \frac{g-2}{2}$ 2

[Aoyama, Kinoshita, Nio (2017)] a (theor.) = 1159652182.03 ... × 10⁻¹² $a(exp.) = 1159652180.73 ... \times 10^{-12}$

[Aoyama, Kinoshita, Nio (2017)] a (theor.) = 1159652182.03 ... × 10⁻¹² $a(exp.) = 1159652180.73 ... \times 10^{-12}$

ex. 1) Hadron properties:

e.g., mass, charge dist., decay mode, …

See also recent review [Iwasaki, Oka, Suzuki (2021)]

ex. 2) QCD phase diagram

e.g., (inverse) magnetic catalysis, new phase, …

ex. 3) Others: Anomalous transport, (for color EM field) Glasma, string breaking, …

Many reviews, e.g., [Kharzeev, Liao, Voloshin, Wang (2016)] [Hattori, Huang (2017)] …

Many theoretical predictions, but never observed experimentally yet

Need of extremely strong EM field

 ${\rm \bf Minimum \; strength: } \; eE, eB \; {\rm MeV^2} > m_e^2 = (0.511 \; {\rm MeV})^2 \approx {\cal O}(10^{28} \; {\rm W/cm^2})$

Weak. Any nice idea ? ⇒ Heavy-ion collisions !

1. Brief review of strong-field physics

2. Strong EM field at high-energy heavy-ion collisions

3. Strong EM field at middle-energy heavy-ion collisions

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

4. An example of strong-field phenomenon: Vacuum decay and modification to photon propagation

[HT, Ironside (Curtin), in progress]

5. Summary

Strong EM field at high-energy heavy-ion collisions

Animation stolen from Internet

Strong magnetic field is created

Strong EM field at high-energy heavy-ion collisions

[Deng, Huang (2012)] See also [Bzdak, Skokov (2012)] [Hattori, Huang (2016)]

Strong magnetic field is created

Pro: Super strong $eB \gg \Lambda_{\text{QCD}}^2$ (Strongest in the Universe !)

Cons: Extremely short-lived ($\tau \ll 1$ fm/c)

⇒ Affects "non-perturbativeness" of physics

Shorter lifetime ⇒ more perturbative

Shorter lifetime ⇒ more perturbative

Intuition: No time for multiple interactions

…

"Phase diagram" of strong-field physics

 \boldsymbol{F}

As example: Vacuum particle prod. by E field w/ finite lifetime

- Three dimensionful parameters in the system: eE, τ, m
	- \Rightarrow Two dim.-less parameters determine the physics

$$
\gamma = \frac{m}{eE \tau} = \frac{(\text{Typical energy})}{(\text{Work by field})} \Rightarrow \text{Characterize the magnitude of work}
$$
\n
$$
\nu = \frac{eE \tau}{1/\tau} = \frac{(\text{Work by field})}{(\text{Photon energy})} \Rightarrow \text{Characterize the number of photons}
$$

 $\cdot \mathbf{y} \ll 1$, $\mathbf{v} \gg 1 \Rightarrow$ Non-perturbative

 \bm{F}

F

F

F

• High-energy HIC:
$$
eF \sim (1 \text{ GeV})^2
$$
, $\tau \sim 0.1 \text{ fm}/c \Rightarrow \gamma \sim \begin{cases} 10^{-3} (m = \Lambda_{\text{QCD}}) \\ 10^{-5} (m = m_e) \end{cases}$, $\nu \sim 0.1$

 \boldsymbol{F}

 \boldsymbol{F}

Shorter lifetime ⇒ more perturbative

Intuition: No time for multiple interactions

…

"Phase diagram" of strong-field physics

 \boldsymbol{F}

As example: Vacuum particle prod. by E field w/ finite lifetime

- Three dimensionful parameters in the system: eE, τ, m
	- \Rightarrow Two dim.-less parameters determine the physics

$$
\gamma = \frac{m}{eE \tau} = \frac{(\text{Typical energy})}{(\text{Work by field})} \Rightarrow \text{Characterize the magnitude of work}
$$
\n
$$
\nu = \frac{eE \tau}{1/\tau} = \frac{(\text{Work by field})}{(\text{Photon energy})} \Rightarrow \text{Characterize the number of photons}
$$

 $\cdot \mathbf{y} \ll 1$, $\mathbf{v} \gg 1 \Rightarrow$ Non-perturbative

 \bm{F}

F

F

F

 \boldsymbol{F}

 \boldsymbol{F}

• High-energy HIC:
$$
eF \sim (1 \text{ GeV})^2
$$
, $\tau \sim 0.1 \text{ fm}/c \Rightarrow \gamma \sim \begin{cases} 10^{-3} (m = \Lambda_{\text{QCD}}) \\ 10^{-5} (m = m_e) \end{cases}$, $\nu \sim 0.1$

⇒ High-energy heavy-ion collisions are meaningless for strong-field physics ? ⇒ Not necessarily. A good chance to study higher-order effects

Experimental results

Achievements

(Prior to any other experiments; e.g., intense laser)

・ very FIRST observation of high-order QED processes

ex. 1) Light-by-light scattering ex. 2) Breit-Wheeler process

・ Unfortunately, nothing has been observed in QCD

ex) Negative result of CME search with isobar collisions

[STAR (2021)]

<u>√ OK, they are good. BUT, what we really want is something non-pert. !</u>

⇒ Any good ideas?

⇒ Go to "middle energies" !

1. Brief review of strong-field physics

2. Strong EM field at high-energy heavy-ion collisions

3. Strong EM field at middle-energy heavy-ion collisions

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

4. An example of strong-field phenomenon: Vacuum decay and modification to photon propagation

[HT, Ironside (Curtin), in progress]

5. Summary

Strong EM field at middle-energy heavy-ion collisions

Lower energy ⇒ Landau stopping picture

Thr.: Numerics w/ hadron transport models

 \Rightarrow Dense matter is formed for a long time $O(10 - 1000$ fm/c)

Strong EM field at middle-energy heavy-ion collisions

Lower energy ⇒ Landau stopping picture

Thr.: Numerics w/ hadron transport models

 \Rightarrow Dense matter is formed for a long time $O(10 - 1000$ fm/c)

⇒ Charge density is also large ("High Z atom" s.t. ≳ /) ⇒ Strong Coulomb field

・ High energy ⇒ Magnetic vs Low/middle energy ⇒ Electric

• Rough order estimate:
$$
eE \sim \frac{Z\alpha}{r^2} \sim \Lambda_{\text{QCD}}^2 \sim (100 \text{ MeV})^2
$$

\n $\Rightarrow \gamma = \frac{m}{eE\tau} \leq \begin{cases} 10^{-1} \left(m = \Lambda_{\text{QCD}} \right) & 0.1, \nu = eE\tau^2 \geq 10 \end{cases} \Rightarrow \text{Non-pert both in QED & QCD } \begin{cases} \gamma \ll 1 \\ \nu \gg 1 \end{cases}$

Strong EM field at middle-energy heavy-ion collisions

Lower energy ⇒ Landau stopping picture

Exp.: Proton rapidity dist. dN/dy

Thr.: Numerics w/ hadron transport models

\Rightarrow Dense matter is formed for a long time $O(10 - 1000$ fm/c)

⇒ Charge density is also large ("High Z atom" s.t. ≳ /) ⇒ Strong Coulomb field

・ High energy ⇒ Magnetic vs Low/middle energy ⇒ Electric

• Rough order estimate:
$$
eE \sim \frac{Z\alpha}{r^2} \sim \Lambda_{\text{QCD}}^2 \sim (100 \text{ MeV})^2
$$

\n $\Rightarrow \gamma = \frac{m}{eE\tau} \leq \begin{cases} 10^{-1} \left(m = \Lambda_{\text{QCD}} \right) & 0.1, \nu = eE\tau^2 \geq 10 \end{cases} \Rightarrow \text{Non-pert both in QED & QCD } \begin{cases} \gamma \ll 1 \\ \nu \gg 1 \end{cases}$

∴ Interesting to strong-field physics. May affect QCD/hadron processes as well ⇒ Need to think about this seriously

Estimation with a hadron trans. model: JAM (1/5)

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

JAM (Jet AA Microscopic transport model)

[Nara, Otsuka, Ohnishi, Nitta, Chiba (2000)]

- ・ A microscopic model to simulate heavy-ion collisions
	- = Superposition of two body hadron scatterings + Inelastic scattering processes

Low energy: Resonance ($E_{CM} \lesssim 4$ GeV)

High energy: PYHITA \rightarrow string breaking ($E_{CM} \geq 4$ GeV)

mini jets($E_{CM} \ge 20$ GeV)

- ・ Reliable at not-high energies, i.e., below RHIC energy O(100 GeV) scale
- ・ Anyway, **phase space distribution of charged particles** can be calculated

Phase space dist. ⇒ EM field From JAM $A^{\mu}(x^0, x) = \frac{1}{4\pi} \int_{-\infty}^{+\infty} d^3 x' \frac{\sqrt{J^{\mu}(x^0 - |x - x'|, x')}}{|x - x'|}$ **Rem. 1:** Don't use Lienard-Wiechert potential for a point-like particle \Leftarrow LW potential is not applicable, since particles are produced

Rem. 2: The following results are after N=100 event averaging: $\langle A \rangle = \frac{1}{N}$ $\frac{1}{N}\sum_{n=1}^{N}A_n$

Estimation with a hadron trans. model: JAM (2/5)

∨ ∔

Saturation density

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

Time evol. of charge density (central coll.) @ z=0z x Preliminary results ECM = 2.0 GeV 3.0 GeV 4.0 GeV 6.3 GeV 7.7 GeV j_0 /|e| fm⁻³ j_0 /|e| fm⁻³ j_0 /|e| fm⁻³ j_0 /|e| fm⁻³ $i\sqrt{|e|}$ fm⁻³ at $x = 0.00$ fm, $t = 0.00$ fm/c at $x = 0.00$ fm, $t = 0.00$ fm/o at $x = 0.00$ fm, $t = 0.00$ fm/c at $x = 0.00$ fm, $t = 0.00$ fm/c at $x = 0.00$ fm, $t = 0.00$ fm/c 0.8 20 $20\,$ 0.8 20 20 20 0.8 0.8 15 0.6 15 0.6 15 0.6 0.6 15 0.6 15 0.4 10 0.4 10 0.4 10 0.4 10 10 $0.4\,$ $\overline{5}$ 0.2 5 0.2 5 0.2 5 0.2 \sim 0.2 y fm $\boldsymbol{0}$ θ Ω $\overline{0}$ $\overline{0}$ Ω $\mathbf{0}$ $\overline{0}$ -5 -0.2 -5 -0.2 -5 -0.2 -5 -0.2 -5 -0.2 -10 -10 -0.4 -10 -0.4 -10 -0.4 -10 -0.4 -0.4 -1.5 -15 -15 -15 -0.6 -0.6 -15 -0.6 -0.6 -06 -20 -20 -20 -20 -20 10 15 20 $-20 -15 -10$ 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20 $-20 -15 -10 -5$ $\overline{0}$ 5 10 15 20 $-20 -15 -10$ -5 $\overline{0}$ $5\overline{5}$ $-20 - 15 - 10$ -5 $\overline{0}$ 5 10 15 20 -5 $\overline{0}$ z fm z fm z fm z fm z fm

- **・ Huge charge density with a long lifetime time**
	- O(10) times bigger than charge density of a single static ion $\rho_{_\mathrm{charge}}$ ~ $\rho_{_\mathrm{nuclear}}$ /2 ~ 0.08 fm $^{-3}$
	- Energy $\overline{\mathcal{A}} \Rightarrow \rho \overline{\mathcal{A}}$ (∵ Lorentz contraction)
	- Lifetime \sim O(20 fm/c)

・ Switching Landau ↔ Bjorken pictures at ~4 GeV

But, not completely transparent, so have finite ρ in the center

 \Rightarrow Energy \nearrow \Rightarrow Spacetime volume \nearrow

Estimation with a hadron trans. model: JAM (3/5)

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

・ Donut-shaped

 $Leftleftarrow$ Gauss law $E \propto \int \mathrm{d}^3 x \, \rho$

- Field strength can be strong as $e^2F \sim (eE)^2 = O((50 \text{ MeV})^4)$
	- \Rightarrow **• Very strong for QED (** $m_e = 0.511$ **MeV)**
		- May still weak for QCD ($\Lambda_{\text{OCD}} = 200$ MeV), but is non-negligible **(If deconfined, very strong for current quark mass)**

Estimation with a hadron trans. model: JAM (4/5)

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

• **Strong E field with** $e^2 F \sim (eE)^2 \sim (30 \text{ MeV})^2$, **lifetime** $\tau \gtrsim 20$ fm/c, volume $V \gtrsim (15 \text{ fm})^3$

$$
\Rightarrow \text{Non-pert for QED. Non-linear for QCD}
$$
\n
$$
\gamma = \frac{m}{eEt} \text{ or } \frac{m}{eEl} = \begin{cases} O(1) & (m = \Lambda_{\text{QCD}}) \\ O(0.1) & (m = m_e) \end{cases}, \quad \nu = eEt^2 \text{ or } eEl^2 = O(10) \begin{cases} \text{Non-pert} \\ \text{non-pert} \\ \text{Pert} \end{cases}
$$

・ Volume increases monotonically below 10 GeV \Rightarrow A bit funny (?) Needs more investigation (future work)

Estimation with a hadron trans. model: JAM (5/5)

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

Non-central collision ⇒ B & E・B are produced

- $eE \cdot eB = O((50 \text{ MeV})^4)$ \Rightarrow Non-negligible for QCD (Enough strong for electron and current quarks)
- ・ Perhaps, a nice place to study chiral-anomaly-related stuffs

ex) chirality production via the Schwinger mechanism $N_5 = VT$ $eE\cdot eB$ $\frac{1}{2\pi^2}$ exp $-\pi$ $m²$ eE

- **1. Brief review of strong-field physics**
- **2. Strong EM field at high-energy heavy-ion collisions**
- **3. Strong EM field at middle-energy heavy-ion collisions**

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

4. An example of strong-field phenomenon: Vacuum decay and modification to photon propagation

[HT, Ironside (Curtin), in progress]

5. Summary

So far, what interesting?

Middle-energy HIC can be useful for studying "strong" "E-field" phys

・ point 2: E- and B-field physics are different

O(10%) of QCD scale ⇒ May affect hadron/QCD processes

ex) B field at middle-energy heavy-ion collisions can affect flow and yield ratios [Sun, Wang, Li, Wang (2019)]

Ex. of E-field pheno.: Vacuum decay and photon propagation (1/4)

Vacuum decay = Vacuum becomes unstable against particle production in the presence of strong E field

• Const E field ⇒ Schwinger mechanism [Sauter 1931] [Schwinger (1951)]

Ex. of E-field pheno.: Vacuum decay and photon propagation (1/4)

Vacuum decay = Vacuum becomes unstable against particle production in the presence of strong E field

• Const E field ⇒ Schwinger mechanism [Sauter 1931] [Schwinger (1951)]

- \Rightarrow Tunneling can occur only if there're energy levels for $E < -m$
	- \Leftarrow (under various simplifications) OK if Z is sufficiently large: $Z > \alpha^{-1}$

[Pieper, Greiner (1969)] [Gershtein, Zeldovich (1970)]

Ex. of E-field pheno.: Vacuum decay and photon propagation (1/4)

Vacuum decay = Vacuum becomes unstable against particle production in the presence of strong E field

• Const E field ⇒ Schwinger mechanism [Sauter 1931] [Schwinger (1951)]

 \Leftarrow (under various simplifications) OK if Z is sufficiently large: $Z > \alpha^{-1}$

[Pieper, Greiner (1969)] [Gershtein, Zeldovich (1970)]

∴ Extra positron production in middle-energy HIC

This is interesting, but not the whole story ⇒ Change of photon propagation

Ex. of E-field pheno.: Vacuum decay and photon propagation (2/4)

"Tilting" of the vacuum affects photon propagation

 \Leftarrow Interference in the Dirac sea due to the reflection by the gap [HT (2019)]

Ex. of E-field pheno.: Vacuum decay and photon propagation (2/4)

"Tilting" of the vacuum affects photon propagation

 \Leftarrow Interference in the Dirac sea due to the reflection by the gap [HT (2019)]

⇒ Photon propagating in the vacuum shall interact with the Dirac sea

Expectation 1: Photon propagation (=real and imag. parts of reflective index) should have signatures of the oscillating electron distribution

Expectation 2: Photon propagation should depend on the direction of the E field (vacuum birefringence)

For B field: [Hattori, Itakura (2013)]

Ex. of E-field pheno.: Vacuum decay and photon propagation (3/4)

[HT, Ironside (Curtin), in progress]

A simple setup: a probe E field in the vacuum under a strong const E field

Observables: Real and imag. parts of electric permittivity

Ex. of E-field pheno.: Vacuum decay and photon propagation (4/4)

[HT, Ironside (Curtin), in progress]

真空

ICEL. BEAR EACITE

- ・ Oscillating behavior \Leftarrow result of the oscillating Dirac-sea structure
- Probe-direction dependent response ⇒ Birefringence

- **1. Brief review of strong-field physics**
- **2. Strong EM field at high-energy heavy-ion collisions**
- **3. Strong EM field at middle-energy heavy-ion collisions**

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

4. An example of strong-field phenomenon: Vacuum decay and modification to photon propagation

[HT, Ironside (Curtin), in progress]

5. Summary

Summary

Middle-energy heavy-ion collisions $\sqrt{s_{NN}} = O(1 \cdot 10 \text{ GeV})$ may be interesting **not only to QCD but also to strong-field physics**

- **・** Estimation of EM field strength and spacetime volume with a hadron transport model (JAM)
- \Rightarrow Strong O(30 MeV) and large spacetime volume O((20 fm)⁴)
	- ⇒ A nice setup to study strong-field QED. Non-negligible to hadronic/QCD processes as well.

