Opportunities of strong-field physics In middle-energy heavy-ion collisions

Hidetoshi Taya (RIKEN iTHEMS)

<u>Plan</u>

Middle-energy heavy-ion collisions $\sqrt{s_{NN}} = O(1-10 \text{ GeV})$ may be interesting not only to QCD but also to strong-field physics

- Estimation of EM field strength and spacetime volume with a hadron transport model (JAM) \Rightarrow Strong O(30 MeV) and large spacetime volume O((20 fm)⁴)
 - \Rightarrow A nice setup to study strong-field QED. Non-negligible to hadronic/QCD processes as well.
- **1. Brief review of strong-field physics**

2. Strong EM field at high-energy heavy-ion collisions

• Clarify relationship between "non-perturbativeness" and strength and lifetime of EM field

3. Strong EM field at middle-energy heavy-ion collisions

- Estimation of EM field profiles with JAM
- 4. An example of strong-field phenomenon: Vacuum decay and modification to photon propagation

[<u>HT</u>, Ironside (Curtin), in progress]

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

1. Brief review of strong-field physics

2. Strong EM field at high-energy heavy-ion collisions

3. Strong EM field at middle-energy heavy-ion collisions

[Nishimura (Osaka), Ohnishi (Kyoto), <u>HT</u>, in progress]

4. An example of strong-field phenomenon: Vacuum decay and modification to photon propagation

[HT, Ironside (Curtin), in progress]

5. Summary

Vacuum (=No EM field)

Vacuum (=No EM field)

Weak EM field $(eF/m^2 \lesssim 1)$

Strong EM field $(eF/m^2 \gtrsim 1)$

Vacuum (=No EM field) Weak EM field $(eF/m^2 \leq 1)$

Strong EM field $(eF/m^2 \gtrsim 1)$

Almost the same

 \Rightarrow Perturbative

 \Rightarrow Understood well

ex) Electron anomalous magnetic moment $a \coloneqq \frac{g-2}{2}$

 $a(\text{theor.}) = 1159652182.03 \dots \times 10^{-12}$ [Aoyama, Kinoshita, Nio (2017)] $a(\text{exp.}) = 1159652180.73 \dots \times 10^{-12}$

 $a(\text{theor.}) = 1159652182.03 \dots \times 10^{-12}$ [Aoyama, Kinoshita, Nio (2017)] $a(\text{exp.}) = 1159652180.73 \dots \times 10^{-12}$

ex. 1) Hadron properties:

e.g., mass, charge dist., decay mode, ...

See also recent review [Iwasaki, Oka, Suzuki (2021)]

ex. 2) QCD phase diagram

e.g., (inverse) magnetic catalysis, new phase, ...

ex. 3) Others: Anomalous transport, (for color EM field) Glasma, string breaking, ...

Many reviews, e.g., [Kharzeev, Liao, Voloshin, Wang (2016)] [Hattori, Huang (2017)] ...

Many theoretical predictions, but never observed experimentally yet

Need of extremely strong EM field

✓ Minimum strength: eE, eB MeV² > $m_e^2 = (0.511 \text{ MeV})^2 \approx O(10^{28} \text{ W/cm}^2)$

Weak. Any nice idea $? \Rightarrow$ Heavy-ion collisions !

1. Brief review of strong-field physics

2. Strong EM field at high-energy heavy-ion collisions

3. Strong EM field at middle-energy heavy-ion collisions

[Nishimura (Osaka), Ohnishi (Kyoto), <u>HT</u>, in progress]

4. An example of strong-field phenomenon: Vacuum decay and modification to photon propagation

[HT, Ironside (Curtin), in progress]

5. Summary

Strong EM field at high-energy heavy-ion collisions

Animation stolen from Internet

✓ Strong magnetic field is created

Strong EM field at high-energy heavy-ion collisions

[Deng, Huang (2012)] See also [Bzdak, Skokov (2012)] [Hattori, Huang (2016)]

✓ Strong magnetic field is created

Pro: Super strong $eB \gg \Lambda^2_{QCD}$ (Strongest in the Universe !)

Cons: Extremely short-lived ($\tau \ll 1 \text{ fm}/c$)

⇒ Affects "non-perturbativeness" of physics

Shorter lifetime ⇒ more perturbative

<u>Shorter lifetime ⇒ more perturbative</u>

Intuition: No time for multiple interactions

"Phase diagram" of strong-field physics

As example: Vacuum particle prod. by E field w/ finite lifetime

- Three dimensionful parameters in the system: eE, τ, m
 - \Rightarrow Two dim.-less parameters determine the physics

$$\gamma = \frac{m}{eE \tau} = \frac{\text{(Typical energy)}}{\text{(Work by field)}} \Rightarrow \text{Characterize the magnitude of work}$$
$$\nu = \frac{eE \tau}{1/\tau} = \frac{\text{(Work by field)}}{\text{(Photon energy)}} \Rightarrow \text{Characterize the number of photons}$$

- $\gamma \ll 1$, $\nu \gg 1 \ \Rightarrow$ Non-perturbative
- High-energy HIC: $eF \sim (1 \text{ GeV})^2$, $\tau \sim 0.1 \text{ fm}/c \Rightarrow \gamma \sim \begin{cases} 10^{-3} (m = \Lambda_{\text{QCD}}) \\ 10^{-5} (m = m_{\text{e}}) \end{cases}$, $\nu \sim 0.1$

<u>Shorter lifetime ⇒ more perturbative</u>

Intuition: No time for multiple interactions

Phase diagram of strong-field physics

As example: Vacuum particle prod. by E field w/ finite lifetime

- Three dimensionful parameters in the system: eE, τ, m
 - \Rightarrow Two dim.-less parameters determine the physics

$$\gamma = \frac{m}{eE \tau} = \frac{\text{(Typical energy)}}{\text{(Work by field)}} \Rightarrow \text{Characterize the magnitude of work}$$
$$\nu = \frac{eE \tau}{1/\tau} = \frac{\text{(Work by field)}}{\text{(Photon energy)}} \Rightarrow \text{Characterize the number of photons}$$

• $\gamma \ll 1$, $\nu \gg 1 \ \Rightarrow$ Non-perturbative

• High-energy HIC:
$$eF \sim (1 \text{ GeV})^2$$
, $\tau \sim 0.1 \text{ fm}/c \Rightarrow \gamma \sim \begin{cases} 10^{-3} (m = \Lambda_{\text{QCD}}) \\ 10^{-5} (m = m_{\text{e}}) \end{cases}$, $\nu \sim 0.1 \text{ fm}/c$

⇒ High-energy heavy-ion collisions are meaningless for strong-field physics ?
 ⇒ Not necessarily. A good chance to study higher-order effects

Experimental results

Achievements

(Prior to any other experiments; e.g., intense laser)

very FIRST observation of high-order QED processes

ex. 1) Light-by-light scattering ex. 2) Breit-Wheeler process

Unfortunately, nothing has been observed in QCD

ex) Negative result of CME search with isobar collisions

[STAR (2021)]

✓ OK, they are good. BUT, what we really want is something non-pert.!

⇒ Any good ideas?

⇒ Go to "middle energies" !

1. Brief review of strong-field physics

2. Strong EM field at high-energy heavy-ion collisions

3. Strong EM field at middle-energy heavy-ion collisions

[Nishimura (Osaka), Ohnishi (Kyoto), <u>HT</u>, in progress]

4. An example of strong-field phenomenon: Vacuum decay and modification to photon propagation

[HT, Ironside (Curtin), in progress]

5. Summary

Strong EM field at middle-energy heavy-ion collisions

✓ Lower energy ⇒ Landau stopping picture

Exp.: Proton rapidity dist. dN/dy

Thr.: Numerics w/ hadron transport models

 \Rightarrow Dense matter is formed for a long time O(10 - 1000 fm/c)

Strong EM field at middle-energy heavy-ion collisions

✓ Lower energy ⇒ Landau stopping picture

Exp.: Proton rapidity dist. dN/dy

Thr.: Numerics w/ hadron transport models

\Rightarrow Dense matter is formed for a long time O(10 - 1000 fm/c)

\Rightarrow Charge density is also large ("High Z atom" s.t. $Z \gtrsim 1/\alpha$) \Rightarrow Strong Coulomb field

• High energy \Rightarrow Magnetic vs Low/middle energy \Rightarrow Electric

$$\Rightarrow \gamma = \frac{m}{eE\tau} \leq \begin{cases} 10^{-1} \left(m = \Lambda_{\text{QCD}} \right) \\ 10^{-4} \left(m = m_{\text{e}} \right) \end{cases} \sim 0.1, \nu = eE\tau^2 \geq 10 \Rightarrow \text{Non.-pert both in QED & QCD} \begin{cases} \gamma \ll 1 \\ \nu \gg 1 \end{cases}$$

Strong EM field at middle-energy heavy-ion collisions

✓ Lower energy ⇒ Landau stopping picture

Exp.: Proton rapidity dist. dN/dy

Thr.: Numerics w/ hadron transport models

 \Rightarrow Dense matter is formed for a long time O(10 - 1000 fm/c)

 \Rightarrow Charge density is also large ("High Z atom" s.t. $Z \gtrsim 1/\alpha$) \Rightarrow Strong Coulomb field

• High energy \Rightarrow Magnetic vs Low/middle energy \Rightarrow Electric

• Rough order estimate:
$$eE \sim \frac{Z\alpha}{r^2} \sim \Lambda_{QCD}^2 \sim (100 \text{ MeV})^2$$

 $\Rightarrow \gamma = \frac{m}{eE\tau} \leq \begin{cases} 10^{-1} (m = \Lambda_{QCD}) \\ 10^{-4} (m = m_e) \end{cases} \sim 0.1, \nu = eE\tau^2 \geq 10 \Rightarrow \text{Non.-pert both in QED & QCD} \begin{cases} \gamma \ll 1 \\ \nu \gg 1 \end{cases}$

∴ Interesting to strong-field physics. May affect QCD/hadron processes as well
 ⇒ Need to think about this seriously

Estimation with a hadron trans. model: JAM (1/5)

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

✓ JAM (Jet AA Microscopic transport model)

[Nara, Otsuka, Ohnishi, Nitta, Chiba (2000)]

- A microscopic model to simulate heavy-ion collisions
 - = Superposition of two body hadron scatterings + Inelastic scattering processes

Low energy: Resonance ($E_{CM} \lesssim 4 \text{ GeV}$)

High energy: PYHITA \rightarrow string breaking ($E_{CM} \gtrsim 4 \text{ GeV}$)

mini jets($E_{\rm CM} \gtrsim 20 \, {\rm GeV}$)

- Reliable at not-high energies, i.e., below RHIC energy O(100 GeV) scale
- Anyway, phase space distribution of charged particles can be calculated

✓ Phase space dist. ⇒ EM field $A^{\mu}(x^{0}, \boldsymbol{x}) = \frac{1}{4\pi} \int_{-\infty}^{+\infty} d^{3}\boldsymbol{x}' \frac{J^{\mu}(x^{0} - |\boldsymbol{x} - \boldsymbol{x}'|, \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|}$ Rem. 1: Don't use Lienard-Wiechert potential for a point-like particle \leftarrow LW potential is not applicable, since particles are produced

Rem. 2: The following results are after N=100 event averaging: $\langle A \rangle = \frac{1}{N} \sum_{n=1}^{N} A_n$

Estimation with a hadron trans. model: JAM (2/5)

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

Huge charge density with a long lifetime time

- O(10) times bigger than charge density of a single static ion $\rho_{\rm charge} \sim \rho_{\rm nuclear}$ /2 $\sim 0.08~{\rm fm^{-3}}$

Saturation

density

- Energy $\nearrow \Rightarrow \rho \nearrow$ (: Lorentz contraction)
- Lifetime ~ O(20 fm/c)

Switching Landau ↔ Bjorken pictures at ~4 GeV

But, not completely transparent, so have finite $\boldsymbol{\rho}$ in the center

 \Rightarrow Energy $\nearrow \Rightarrow$ Spacetime volume \nearrow

Estimation with a hadron trans. model: JAM (3/5)

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

• Donut-shaped

 $\Leftarrow \text{Gauss law } E \propto \int \mathrm{d}^3 x \, \rho$

• Field strength can be strong as $e^2 F \sim (eE)^2 = O((50 \text{ MeV})^4)$

 \Rightarrow • Very strong for QED ($m_e = 0.511 \text{ MeV}$)

• May still weak for QCD ($\Lambda_{QCD} = 200$ MeV), but is non-negligible (If deconfined, very strong for current quark mass)

Estimation with a hadron trans. model: JAM (4/5)

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

• Strong E field with $e^2 F \sim (eE)^2 \sim (30 \text{ MeV})^2$, lifetime $\tau \gtrsim 20 \, {
m fm}/c$, volume $V \gtrsim (15 \, {
m fm})^3$

 \Rightarrow **Non-pert** for QED. **Non-linear** for QCD

$$\gamma = \frac{m}{eE\tau} \text{ or } \frac{m}{eEl} = \begin{cases} 0(1) \quad (m = \Lambda_{\text{QCD}}) \\ 0(0.1) \quad (m = m_{\text{e}}) \end{cases}, \ \nu = eE\tau^2 \text{ or } eEl^2 = 0(10) \end{cases}$$

Volume increases monotonically below 10 GeV

 \Rightarrow A bit funny (?) Needs more investigation (future work)

Estimation with a hadron trans. model: JAM (5/5)

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

✓ Non-central collision ⇒ B & E•B are produced

- $e\mathbf{E} \cdot e\mathbf{B} = O((50 \text{ MeV})^4) \Rightarrow$ Non-negligible for QCD (Enough strong for electron and current quarks)
- Perhaps, a nice place to study chiral-anomaly-related stuffs

ex) chirality production via the Schwinger mechanism $N_5 = VT \frac{e\mathbf{E} \cdot e\mathbf{B}}{2\pi^2} \exp\left[-\pi \frac{m^2}{eE}\right]$

- **1. Brief review of strong-field physics**
- 2. Strong EM field at high-energy heavy-ion collisions
- 3. Strong EM field at middle-energy heavy-ion collisions

[Nishimura (Osaka), Ohnishi (Kyoto), <u>HT</u>, in progress]

4. An example of strong-field phenomenon: Vacuum decay and modification to photon propagation

[HT, Ironside (Curtin), in progress]

5. Summary

So far, what interesting?

Middle-energy HIC can be useful for studying "strong" "E-field" phys

<u>O(10%) of QCD scale \Rightarrow May affect hadron/QCD processes</u>

ex) B field at middle-energy heavy-ion collisions can affect flow and yield ratios [Sun, Wang, Li, Wang (2019)]

Ex. of E-field pheno.: Vacuum decay and photon propagation (1/4)

Vacuum decay = Vacuum becomes unstable against particle production in the presence of strong E field

• Const E field \Rightarrow Schwinger mechanism [Sauter 1931] [Schwinger (19_____

Ex. of E-field pheno.: Vacuum decay and photon propagation (1/4)

Vacuum decay = Vacuum becomes unstable against particle production in the presence of strong E field

• Const E field \Rightarrow Schwinger mechanism [Sauter 1931] [Schwinger (19_____]

- \Rightarrow Tunneling can occur only if there're energy levels for E < -m
 - \leftarrow (under various simplifications) OK if Z is sufficiently large: $Z > \alpha^{-1}$ [Gers

[Pieper, Greiner (1969)] [Gershtein, Zeldovich (1970)]

Ex. of E-field pheno.: Vacuum decay and photon propagation (1/4)

Vacuum decay = Vacuum becomes unstable against particle production in the presence of strong E field

• Const E field \Rightarrow Schwinger mechanism [Sauter 1931] [Schwinger (19_____]

 \Leftarrow (under various simplifications) OK if *Z* is sufficiently large: *Z* > α⁻¹

[Pieper, Greiner (1969)] [Gershtein, Zeldovich (1970)]

: Extra positron production in middle-energy HIC

This is interesting, but not the whole story \Rightarrow Change of photon propagation

Ex. of E-field pheno.: Vacuum decay and photon propagation (2/4)

"Tilting" of the vacuum affects photon propagation

 \leftarrow Interference in the Dirac sea due to the reflection by the gap [HT (2019)]

Ex. of E-field pheno.: Vacuum decay and photon propagation (2/4)

"Tilting" of the vacuum affects photon propagation

 \leftarrow Interference in the Dirac sea due to the reflection by the gap [HT (2019)]

⇒ Photon propagating in the vacuum shall interact with the Dirac sea

Expectation 1: Photon propagation (=real and imag. parts of reflective index) should have signatures of the oscillating electron distribution

Expectation 2: Photon propagation should depend on the direction of the E field (vacuum birefringence)

For B field: [Hattori, Itakura (2013)]

Ex. of E-field pheno.: Vacuum decay and photon propagation (3/4)

[HT, Ironside (Curtin), in progress]

✓ A simple setup: a probe E field in the vacuum under a strong const E field

✓ Observables: Real and imag. parts of electric permittivity

Ex. of E-field pheno.: Vacuum decay and photon propagation (4/4)

[HT, Ironside (Curtin), in progress]

真空

ICEL, ND SPAR CALCITE

- Oscillating behavior
 ← result of the oscillating Dirac-sea structure
- Probe-direction dependent response
 ⇒ Birefringence

- **1. Brief review of strong-field physics**
- 2. Strong EM field at high-energy heavy-ion collisions
- 3. Strong EM field at middle-energy heavy-ion collisions

[Nishimura (Osaka), Ohnishi (Kyoto), <u>HT</u>, in progress]

4. An example of strong-field phenomenon: Vacuum decay and modification to photon propagation

[HT, Ironside (Curtin), in progress]

5. Summary

Summary

Middle-energy heavy-ion collisions $\sqrt{s_{NN}} = O(1 - 10 \text{ GeV})$ may be interesting not only to QCD but also to strong-field physics

- Estimation of EM field strength and spacetime volume with a hadron transport model (JAM) \Rightarrow Strong O(30 MeV) and large spacetime volume O((20 fm)⁴)
 - \Rightarrow A nice setup to study strong-field QED. Non-negligible to hadronic/QCD processes as well.

