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This talk
Discuss the electric permittivity 𝝐𝝐 of the 

vacuum in a strong constant electric field

In the pure vacuum 𝒟𝒟 = ℰ In an EM field 𝒟𝒟 = 𝜖𝜖ℰ ≠ ℰ

～～ ～ ～



Motivations

(1) Is a well studied topic, but incomplete yet

(2) Want to use as a tool to diagnose the structure of the QED vacuum

(3) Semi-conductor experiments of electroreflectance

Why interesting ?



Q: What happens if I go beyond the weak & slow limit ?  

Motivations (1/3)

・ Previous studies: typically for equilibrium situations (e.g., B field, null field)

・ E-field case exists, but not satisfactory enough 

😡😡 valid in the weak field limit

😡😡 valid for slow probes

😡😡 imaginary part ?

Re 𝜖𝜖 (𝜔𝜔 ≪ 𝑚𝑚, 𝑒𝑒 �𝐸𝐸 ≪ 𝑚𝑚2) =
𝛼𝛼

45𝜋𝜋
𝑒𝑒 �𝐸𝐸
𝑚𝑚2

2

× �
6 (∥)
2 (⊥)

𝒟𝒟 = −
𝜕𝜕ℒEuler−Heisenberg

𝜕𝜕ℰ

⇒

[Toll (1960)] [Hattori-Itakura (2013)] …

[Baier-Breitenlohner (1967)]

(1) Is a well studied topic, but incomplete yet

(2) Want to use as a tool to diagnose the structure of the QED vacuum

(3) Semi-conductor experiments of electroreflectance

Why interesting ?



Motivations (2/3)

In an E field, the QED vacuum is tilted 

Q: How is the tilted QED-vacuum structure seen in the electric permittivity ?

⇒ oscillating dist. due to interference

reflected by gap

electrons coming

electron distribution

electric field direction ➡ 

(1) Is a well studied topic, but incomplete yet

(2) Want to use as a tool to diagnose the structure of the QED vacuum

(3) Semi-conductor experiments of electroreflectance

Why interesting ?
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Motivations (2/3)

In an E field, the QED vacuum is tilted 

Q: How is the tilted QED-vacuum structure seen in the electric permittivity ?

⇒ oscillating dist. due to interference

reflected by gap

electrons coming

Can leave observable imprints

electron distribution

electric field direction ➡ 

・ ex.) dynamically-assisted Schwinger
(pair prod. in const �𝐸𝐸 + fast ℰ)

Oscillation 

(1) Is a well studied topic, but incomplete yet

(2) Want to use as a tool to diagnose the structure of the QED vacuum

(3) Semi-conductor experiments of electroreflectance

Why interesting ?

[HT (2019)] 
[Huang, HT (2019)]

𝑉𝑉 = −𝑒𝑒𝐸𝐸𝑒𝑒



Such an oscillating behavior in 𝜖𝜖 has been observed in semi-conductor materials

Q: Natural to expect semi-conductor-like behavior in QED.  Is this true ?

𝜖𝜖 𝑒𝑒 �𝐸𝐸 ≠ 0 − 𝜖𝜖(𝑒𝑒 �𝐸𝐸 = 0)

≈ Re Δ𝜖𝜖

[Yacoby (1966)] [Seraphin, Hess (1965)]

with Si
with Ge

Motivations (3/3)

(1) Is a well studied topic, but incomplete yet

(2) Want to use as a tool to diagnose the structure of the QED vacuum

(3) Semi-conductor experiments of electroreflectance

Why interesting ?

≈ Im Δ𝜖𝜖



Motivations

(1) Is a well studied topic, but incomplete yet

(2) Want to use as a tool to diagnose the structure of the QED vacuum

(3) Semi-conductor experiments of electroreflectance

Why interesting ?

This talk: answer those questions

Q: What happens if I go beyond the weak & slow limit ?  

Q: How is the tilted QED-vacuum structure seen in the electric permittivity ?

Q: Natural to expect semi-conductor-like behavior in QED.  Is this true ?



Theory (1/2)
Calculate the polarization via the linear response theory

(linear in the probe ℰ but non-pert. in the strong field �𝐸𝐸)
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Setup: QED in the presence of a constant strong field �𝐸𝐸 + a weak spatially homo. probe ℰ(𝑡𝑡)



Theory (1/2)
Calculate the polarization via the linear response theory

(linear in the probe ℰ but non-pert. in the strong field �𝐸𝐸)

Step 1: Definition of 𝒟𝒟 (or 𝜖𝜖)

Setup: QED in the presence of a constant strong field �𝐸𝐸 + a weak spatially homo. probe ℰ(𝑡𝑡)

・ Total flux 𝐷𝐷 = 𝐸𝐸 + 𝑃𝑃( �𝐸𝐸,ℰ) = 𝐸𝐸 + 𝑃𝑃0( �𝐸𝐸) +𝑃𝑃1 ( �𝐸𝐸)ℰ + ⋯

�𝐸𝐸 + ℰ

・ So, identify 𝜖𝜖 = 1 + 𝑃𝑃1( �𝐸𝐸)

= �𝐸𝐸 + 𝑃𝑃0 �𝐸𝐸 + (1 + 𝑃𝑃1 ( �𝐸𝐸)) ℰ + ⋯

𝒟𝒟�𝐷𝐷



～

Theory (1/2)
Calculate the polarization via the linear response theory

(linear in the probe ℰ but non-pert. in the strong field �𝐸𝐸)

Step 1: Definition of 𝒟𝒟 (or 𝜖𝜖)

Setup: QED in the presence of a constant strong field �𝐸𝐸 + a weak spatially homo. probe ℰ(𝑡𝑡)

・ Total flux 𝐷𝐷 = 𝐸𝐸 + 𝑃𝑃( �𝐸𝐸,ℰ) = 𝐸𝐸 + 𝑃𝑃0( �𝐸𝐸) +𝑃𝑃1 ( �𝐸𝐸)ℰ + ⋯

ℰ

= 0; in| �𝜓𝜓0 �𝐸𝐸 𝛾𝛾𝜇𝜇𝜓𝜓0( �𝐸𝐸)|0; in

+ 0; in| �𝜓𝜓1 �𝐸𝐸 𝛾𝛾𝜇𝜇𝜓𝜓0 �𝐸𝐸 + �𝜓𝜓0 �𝐸𝐸 𝛾𝛾𝜇𝜇𝜓𝜓1( �𝐸𝐸)|0; in × ℰ + 𝒪𝒪(ℰ2)

�𝐸𝐸 + ℰ

・ So, identify 𝜖𝜖 = 1 + 𝑃𝑃1( �𝐸𝐸)

= �𝐸𝐸 + 𝑃𝑃0 �𝐸𝐸 + (1 + 𝑃𝑃1 ( �𝐸𝐸)) ℰ + ⋯

Step 2: Calculate the polarization 𝑃𝑃1

・ In QFT, �̇�𝑃 = 0; in| �𝜓𝜓( �𝐸𝐸,ℰ)𝛾𝛾𝜇𝜇𝜓𝜓( �𝐸𝐸,ℰ)|0; in

gives 𝑃𝑃1

・ Diagrammatically, amounts to evaluate 

𝒟𝒟�𝐷𝐷



Theory (2/2)
(1) Use of Kramers-Kronig relation

⇒ Sufficient to calculate the imaginary part
(Same approach has been adopted in semi-conductor) 

・ Some details 

[Toll (1960)] [Heinzl, Schroeder (2006)] [Borysov et al. (2022)]

Re 𝜖𝜖(𝜔𝜔) =
1
𝜋𝜋

P. V.�
−∞

+∞
d𝜔𝜔′ 1

𝜔𝜔′ − 𝜔𝜔
Im 𝜖𝜖(𝜔𝜔′)Causality ⇒

[Aspnes(1967)]



Theory (2/2)
(1) Use of Kramers-Kronig relation

⇒ Sufficient to calculate the imaginary part
(Same approach has been adopted in semi-conductor) 

・ Some details 

[Toll (1960)] [Heinzl, Schroeder (2006)] [Borysov et al. (2022)]

Re 𝜖𝜖(𝜔𝜔) =
1
𝜋𝜋

P. V.�
−∞

+∞
d𝜔𝜔′ 1

𝜔𝜔′ − 𝜔𝜔
Im 𝜖𝜖(𝜔𝜔′)Causality ⇒

(2) Im 𝜖𝜖 is directly related to the pair prod. via the dynamically-assisted Schwinger effect

・ Im 𝜖𝜖 is related to the dielectric energy loss (= decay of probe) 
d𝑈𝑈1
d𝑡𝑡

= ℰ
d𝒟𝒟
d𝑡𝑡

=
1
2
𝜔𝜔ℰ2 Im 𝜖𝜖

d𝑈𝑈2
d𝑡𝑡

= 𝜔𝜔
𝑁𝑁 ℰ ≠ 0 − 𝑁𝑁(ℰ = 0)

𝑉𝑉𝑉𝑉

・ Microscopically, the dielectric energy loss should be caused by the pair production

See, e.g., textbook by Landau-Lefshitz

・ Energy of probe used in the pair production

⇒ 𝑈𝑈1 = 𝑈𝑈2 ⇒  𝑁𝑁 ℰ≠0 −𝑁𝑁(ℰ=0)
𝑉𝑉𝑉𝑉

= 1
2
ℰ2 Im 𝜖𝜖

∴  Dynamically assisted Schwinger   ↔   Im 𝜖𝜖   ↔   Re 𝜖𝜖
KK

[Aspnes(1967)]



Results (1/2)

・ Oscillation, as expected from the tilted vacuum

・ Non-vanishing even at 𝜔𝜔 → 0 due to the strong-field non-perturbative effect

・ Birefringent (Im Δ𝜖𝜖∥ ≠ Im Δ𝜖𝜖⊥) but the basically the same

Strong �𝐸𝐸 Strong �𝐸𝐸
～～ ～

～

Imaginary part of the change 𝚫𝚫𝝐𝝐 = 𝝐𝝐 �𝑬𝑬 ≠ 𝟎𝟎 − 𝝐𝝐(�𝑬𝑬 = 𝟎𝟎)
Probe ℰ Probe ℰ

・ Essentially the same pattern as semi-conductor observation 

A simple explanation: In the slow limit, the Schwinger formula is valid

⇒ Im 𝜖𝜖 ∝ (𝑁𝑁Schwinger �𝐸𝐸 + ℰ − 𝑁𝑁Schwinger �𝐸𝐸 ) ∝ (exp −𝜋𝜋 𝑚𝑚2

𝑒𝑒( �𝐸𝐸+ℰ)
− exp[−𝜋𝜋𝑚𝑚2

𝑒𝑒 �𝐸𝐸
]) = (finite) × exp −𝜋𝜋𝑚𝑚2

𝑒𝑒 �𝐸𝐸



・ Again oscillation, which is again consistent with semi-conductor

・ Logarithmically divergent at 𝜔𝜔 → 0 due to the non-perturbative effect

Strong �𝐸𝐸 Strong �𝐸𝐸
～～ ～

～

Real part of the change 𝚫𝚫𝝐𝝐 = 𝝐𝝐 �𝑬𝑬 ≠ 𝟎𝟎 − 𝝐𝝐(�𝑬𝑬 = 𝟎𝟎)
Probe ℰ Probe ℰ

Note: agrees precisely with the known Euler-Heisenberg result at 𝜔𝜔 → 0 if the log div. was subtracted 

Results (2/2)

Re 𝜖𝜖 0 = 1
𝜋𝜋

P. V.∫−∞
+∞d𝜔𝜔′ 1

𝜔𝜔′ Im 𝜖𝜖 𝜔𝜔′ ∼ 1
𝜋𝜋 ∫−∞

+∞d𝜔𝜔′ 1
𝜔𝜔′ Im 𝜖𝜖 0 ∼ log div. × exp −𝜋𝜋𝑚𝑚2

𝑒𝑒 �𝐸𝐸∵



Q: What happens if I go beyond the weak & slow limit ?  

This talk
・ I’ve calculated the electric permittivity of the vacuum in a constant strong E field

・ My answer to the 3 questions: 

A: Beyond slow ⇒ Oscillation appears
Beyond weak ⇒ Logarithmic divergence at 𝜔𝜔 → 0

Q: How is the tilted QED-vacuum structure seen in the electric permittivity ?

A: Oscillation in the high-frequency regime

Q: Natural to expect semi-conductor-like behavior in QED.  Is this true ?

A: True.  

Q: What happens if I go beyond the weak & slow limit ?  

(and similar plots for Δ𝜖𝜖⊥)
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