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This talk

Discuss the electric permittivity € of the

vacuum in a strong constant electric field

In the pure vacuum D = & Inan EM field D =€ # €




Motivations

(1) Is a well studied topic, but incomplete yet

(2) Want to use as a tool to diagnose the structure of the QED vacuum

(3) Semi-conductor experiments of electroreflectance




Motivations (1/3)

(1) Is a well studied topic, but incomplete yet

* Previous studies: typically for equilibrium situations (e.g., B field, null field)
) ) ) [Toll (1960)] [Hattori-Itakura (2013)] ...
- E-field case exists, but not satisfactory enough

aLEuler—Heisenberg

b=- o€

: valid in the weak field limit

—\ 2
_ a (eE 6 (I
= Ree(w KmeE K m?) = E(W) X {2 EJ_)) < valid for slow probes

[Baier-Breitenlohner (1967)] L imaginary part?

Q: What happens if | go beyond the weak & slow limit ?



Motivations (2/3)

(2) Want to use as a tool to diagnose the structure of the QED vacuum

In an E field, the QED vacuum is tilted

= oscillating dist. due to interference

electric field direction =

V =—eEx

positive energy states

electron distribution

reflected by gap

Q: How is the tilted QED-vacuum structure seen in the electric permittivity ?



Motivations (2/3)

(2) Want to use as a tool to diagnose the structure of the QED vacuum

In an E field, the QED vacuum is tilted Can leave observable imprints

= oscillating dist. due to interference * ex.) dynamically-assisted Schwinger
(pair prod. in const E + fast &£)

electric field direction =

V =—eEx
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reflected by gap [Huang, HT (2019)]

Q: How is the tilted QED-vacuum structure seen in the electric permittivity ?



Motivations (3/3)

(3) Semi-conductor experiments of electroreflectance

Such an oscillating behavior in € has been observed in semi-conductor materials
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Q: Natural to expect semi-conductor-like behavior in QED. Is this true ?



Motivations

(1) Is a well studied topic, but incomplete yet

(2) Want to use as a tool to diagnose the structure of the QED vacuum

(3) Semi-conductor experiments of electroreflectance

This talk: answer those questions



Theory (1/2)

Calculate the polarization via the linear response theory

(linear in the probe £ but non-pert. in the strong field E)
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Calculate the polarization via the linear response theory
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Setup: QED in the presence of a constant strong field E + a weak spatially homo. probe £(¢)



Theory (1/2)

Calculate the polarization via the linear response theory

(linear in the probe £ but non-pert. in the strong field E)

Setup: QED in the presence of a constant strong field E + a weak spatially homo. probe £(¢)
Step 1: Definition of D (or €)

« Total flux D = E + P(E,£) = E + Py(E) +P; (E)E + -+
3 =E+Py(E)+ (1+ P, (E)) E+ -
E+¢& - y
L] 1 1 —_— I 5 D
So, identify e = 1 + P;(E)




Theory (1/2)

Calculate the polarization via the linear response theory

(linear in the probe £ but non-pert. in the strong field E)

Setup: QED in the presence of a constant strong field E + a weak spatially homo. probe £(¢)
Step 1: Definition of D (or €)

« Total fluxD = E + P(E,£) = E + Py(E) +P; (E)E + -+
\ =E+Py(E)+ (1+ P, (E)) E + -
ﬁ(_/ N ~ /
D D

E+E&

» So, identify e = 1+ P, (E)

Step 2: Calculate the polarization P;
» In QFT, P = (0;in|y(E, )y*P(E, £)|0; in)
= (0; in[1Po (E)yHpo(E)]0; in) v gives P;
+[(0; in|1 (E)y*o(E) + Yo (E)yHp, (E)|0; in)|x € + O(E?)

+ Diagrammatically, amounts to evaluate G'\O




Theory (2/2)

e Some details

(1) Use of Kramers-Kronig relation

1 oo 1
lity = R =—P.V.j dw’ I '
Causality e e(w) - > W me(w")

= Sufficient to calculate the imaginary part
(Same approach has been adopted in semi-conductor)



Theory (2/2)

« Some details

(1) Use of Kramers-Kronig relation

1 oo 1
lity = R =—P.V.j dw’ I '
Causality e e(w) - > W me(w")

= Sufficient to calculate the imaginary part
(Same approach has been adopted in semi-conductor)

(2) Im € is directly related to the pair prod. via the dynamically-assisted Schwinger effect

. . . dUl dD 1 ,
 Im € is related to the dielectric energy loss (= decay of probe) = £ —= Ewg 50l o
: . , dU, N(E#0)—N(E =0)
* Energy of probe used in the pair production F T T

+ Microscopically, the dielectric energy loss should be caused by the pair production

N(E#0)-N(£=0) 1

=-E%Ime
VT 2

:>U1=U2 =

KK
. Dynamically assisted Schwinger <> Ime < Ree



Results (1/2)

Imaginary part of the change Ae = €(E # 0) — €(E = 0)
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Oscillation, as expected from the tilted vacuum
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Non-vanishing even at w — 0 due to the strong-field non-perturbative effect

A simple explanation: In the slow limit, the Schwinger formula is valid

_ _ 2 2 2
= Im € x (NSchwinger(E +&) - NSchwinger(E)) x (exp [—71’ e(;:n+5) —exp[—-7 %]) = (finite) X exp [_T[ %]




Results (2/2)

Real part of the change Ae = ¢(E # 0) — €(E = 0)
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- Again oscillation, which is again consistent with semi-conductor
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* Logarithmically divergent at w — 0 due to the non-perturbative effect

U
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PHOTON ENERGY (aV)

co [o') 2
Re e(0) = %P-V. [ dw’ﬁlm e(w") ~%f_+oo dw’ﬁlm €(0) ~ (log div.) x exp [—n:l—b:]

Note: agrees precisely with the known Euler-Heisenberg result at w — 0 if the log div. was subtracted



This talk

* I've calculated the electric permittivity of the vacuum in a constant strong E field
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(and similar plots for Ae )

* My answer to the 3 questions:

Q: What happens if | go beyond the weak & slow limit ?

Q: How is the tilted QED-vacuum structure seen in the electric permittivity ?

Q: Natural to expect semi-conductor-like behavior in QED. Is this true ?
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