Electric permittivity of the vacuum in a strong constant electric field

Hidetoshi TAYA (Special Postdoctoral Researcher (SPDR) at iTHEMS)

Based on a work (in preparation for submission) with Charlie Ironside (Curtin U.)

1. INTRODUCTION

1-1. The vacuum ≠ not an empty space

The vacuum has a structure, similar to semi-conductor

✓ The vacuum should exhibit some responses when shined by strong light (= EM field), similarly to semi-conductor

✓ Why interesting?

(1) Non-trivial: vacuum has rich physics ! (2) Fundamental: the response can be used to diagnose the vacuum

1-2. Recent availability of strong EM field

✓ How strong is needed ?

 \Rightarrow Field strength comp. to the gap size = extremely strong !

 $eE > m_e^2 = (0.511 \text{ MeV})^2 \approx O(10^{28} \text{ W/cm}^2)$

✓ Experimental prog. to create (observe) strong EM field

High-power laser

Also in other extreme systems

1-3. This work: electric permittivity

✓ Electric permittivity ε

- One of the fundamental quantities to characterize the optical property of a matter

The electric permittivity of the vacuum ε has been studied well for equilibrium situations (e.g., B field, null field), r-Breitenlohner (1967), Hattori-Itakura (2013), . but <u>NOT</u> well for E field, which is genuinely non-equilibrium

(3) Timeliness: within experimental reach (see 1-2) (4) Interdiciplinarity:

connect high-energy phys. to others

and so the calculation is more difficult

So, the goal is to calculate the electric permittivity of the vacuum in the presence of a strong electric field

2. THEORY

2-1. What I computed

Want to calculate the electric permittivity ε

- ✓ QED in the presence of a constant strong field \overline{E} plus a weak spatially homogeneous probe field $\mathcal{E}(t)$
- ✓ Calculate the polarization current J_{pol} (in-in expect. value) under the non-perturbative influence by the strong \overline{E}

 $J_{\text{pol}}(\overline{E}, \mathcal{E}) = \langle 0; \text{in} | \overline{\psi}(\overline{E}, \mathcal{E}) \gamma^{\mu} \psi(\overline{E}, \mathcal{E}) | 0; \text{in} \rangle$

 $= \langle 0; \text{in} | \overline{\psi}_0(\overline{E}) \gamma^\mu \psi_0(\overline{E}) | 0; \text{in} \rangle$

 $+ \left\langle 0; \text{in} | \overline{\psi}_1(\overline{E}) \gamma^{\mu} \psi_0(\overline{E}) + \overline{\psi}_0(\overline{E}) \gamma^{\mu} \psi_1(\overline{E}) | 0; \text{in} \right\rangle \times \mathcal{E} + \mathcal{O}(\mathcal{E}^2)$

 \approx $(\gamma^{\mu}) + \varepsilon + \dots$

2-2. Some details

✓ Kramers-Kronig relation

Causality: the response \mathcal{D} must be followed by \mathcal{E} \Rightarrow Re ε and Im ε are not independent with each other \leftarrow can be confirmed with analyzing J_{pol}

Frequency of
$$\mathcal{E}$$

Re $\varepsilon(\omega) = \frac{1}{\pi} P. V. \int_{-\infty}^{+\infty} d\omega' \frac{1}{\omega' - \omega} \operatorname{Im} \varepsilon(\omega')$

Calculation of Im ε is easier than Re ε \Rightarrow Calculate Im ε first, then get Re ε via KK relation

✓ Relation to the Schwinger effect

- The vacuum is unstable against the particle prod. in the presence of \overline{E} and \mathcal{E}
 - \Rightarrow (dynamically-assisted) Schwinger effect

```
utzhold (2009), <u>HT</u> (2017)
```

- The number of pairs $N = \langle 0; in | \hat{N} | 0; in \rangle$ has the direct relevance to $Im \epsilon$

Dielectric energy loss:
$$\frac{dU_1}{dt} = \mathcal{E} \frac{d\mathcal{D}}{dt} = \frac{1}{2} \omega \mathcal{E}^2 \operatorname{Im} \mathcal{E}$$

Energy used in part. pro. : $\frac{dU_2}{dt} = \omega \frac{N(\mathcal{E} \neq 0) - N(\mathcal{E} = 0)}{VT}$

 \Rightarrow can prove $U_1 = U_2$

3. RESULTS

3-1. Imaginary part Im $\Delta \varepsilon$ ($\Delta \varepsilon \coloneqq \varepsilon(\overline{E} \neq 0) - \varepsilon(\overline{E} = 0)$)

3-2. Real part Re $\Delta \varepsilon$

✓ Non-trivial oscillation in ω

- Exponential tail below the mass gap $\omega < 2m$ - Damped oscillation above the mass gap $\omega < 2m$

✓ Birefringence

Im $\Delta \varepsilon_{\perp} \neq \text{Im } \Delta \varepsilon_{\parallel}$, though the basic features are the same

\checkmark Discontinuity at $\omega = 0$ due to the non-pert. effect

Im $\Delta \varepsilon \propto e^{-\# m^2/e\overline{E}}$, which was missing previously

✓ Log divergence at $\omega = 0$ ✓ Similar features to Im $\Delta \varepsilon$

- due to the non-perturbative discontinuity of Im $\Delta \varepsilon$ at $\omega = 0$

- For $e\overline{E} \ll m^2$, it is negligible - Oscillation in ω - Birefringence

Baier-Breitenlohner (1967)

and the result agrees with the previously known $\operatorname{Re} \Delta \varepsilon(\omega = 0, e\overline{E} \ll m^2) = \frac{\alpha}{45\pi} \left(\frac{e\overline{E}}{m^2}\right)^2 \times \begin{cases} 6 \ (\parallel) \\ 2 \ (\perp) \end{cases}$

3-3. Interpretation

✓ Reflecting the structure of the vacuum

Band structure of the vacuum

gap

positive energy states

logic 1) The dist. of the Dirac-sea electrons is oscillating due to interference with the electrons reflected by the gap logic 2) On the other hand, Im ε is related to the particle prod. logic 3) Particle prod. occurs more at where the Dirac-sea electrons exist more logic 4) The energy ω needed for the particle prod. is different depending on from where the particle prod. occurs

A QED analog of the Franz-Keldysh effect in semi-conductor Franz (1958), Keldysh (1958)

Precisely the same pattern has already been observed in semi-cond. experiments

- \therefore Im ε exhibits an oscillating pattern in ω \Rightarrow A similar pattern for Re ε , as it is related to Im ε via the Kramers-Kronig relation
- \Rightarrow Dirac was correct that the vacuum is indeed like a semi-conductor !

4. SUMMARY

What I did

I calculated the electric permittivity of the vacuum in a constant strong electric field

What I wanted to tell you

✓ The vacuum is like a semi-conductor and can exhibit something interesting ✓ An intriguing oscillating pattern appears in the electric permittivity, which is reflecting the change of the vacuum structure in a strong electric field ✓ The slow-frequency limit is modified (e.g., log div.) due to non-perturbative effect by a strong electric field

What I may do next

✓ More general strong-field configurations e.g.) spatial dependence, beyond static, incl. B field

✓ Magnetic permeability

✓ Import the wisdom of semi-cond. physics