Opportunities of strong-field physics in middle-energy heavy-ion collisions

Hidetoshi Taya (RIKEN iTHEMS)

Plan

Middle-energy heavy-ion collisions $\sqrt{s_{NN}} = O(2 - 10 \text{ GeV})$ is interesting **not only to QCD but also to strong-field QED**

1. Introduction to strong-field QED

2. Strong EM field in high-energy heavy-ion collisions

Strong but too short-lived ⇒ affects "non-perturbativeness" of strong-field processes

3. Strong EM field in middle-energy heavy-ion collisions

Estimation of EM field strength and spacetime volume with a hadron transport model (JAM) \Rightarrow "strong" O(50 MeV) and large spacetime volume O((20 fm) 4)

⇒ a nice setup to study strong-field QED; non-negligible to hadronic/QCD processes as well

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

4. Summary

1. Introduction to strong-field QED

2. Strong EM field in high-energy HIC

3. Strong EM field in middle-energy HIC

[Nishimura (Osaka), Ohnishi (Kyoto), HT, to appear soon]

4. Summary

Vacuum (= No EM field)

Vacuum (= No EM field) **Weak EM field** $(eF/m^2 \lesssim 1)$

Strong EM field $(eF/m^2 \geq 1)$

Vacuum (= No EM field) **Weak EM field** $(eF/m^2 \leq 1)$

Strong EM field $(eF/m^2 \geq 1)$

Almost the same ⇒ Perturbative

⇒ Understood

 $a(\text{theor.}) = 1159652182.03 ... \times 10^{-12}$ [Aoyama, Kinoshita, Nio (2017)] ex) Electron anomalous magnetic moment $a \coloneqq \frac{g-2}{2}$ $a(exp.) = 1159652180.73 ... \times 10^{-12}$

Strong-field QED

 $a(\text{theor.}) = 1159652182.03 ... \times 10^{-12}$ [Aoyama, Kinoshita, Nio (2017)] ex) Electron anomalous magnetic moment $a \coloneqq \frac{g-2}{2}$ $a(exp.) = 1159652180.73 ... \times 10^{-12}$

Examples of strong-field phenomena

✓ Novel QED processes ($eF/m_e^2 \ge 1$)

ex) Schwinger mechanism Photon splitting Vacuum birefringence

(= Polarization dep. of reflective index)

Vacuum ICEL. BEAR CACITE

Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson (2022)]

✔ Impacts on QCD/hadron physics ($eF/\Lambda_{\text{QCD}}^2 \gtrsim 1$)

ex. 1) Hadron properties:

 e.g., mass, charge dist., decay mode, … See also recent review [Iwasaki, Oka, Suzuki (2021)]

ex. 2) QCD phase diagram

e.g., (inverse) magnetic catalysis, new phase, …

ex. 3) Others: Anomalous transport, (for color EM field) Glasma, string breaking, …

Many reviews, e.g., [Kharzeev, Liao, Voloshin, Wang (2016)] [Hattori, Huang (2017)] …

Many theoretical predictions, but never observed in experiments

Need of EXTREMELY strong EM field

✔ Order of the magnitude:

QCD: $\lambda_{\text{QCD}}^2 = (200 \text{ MeV})^2 \approx 0 (10^{39} \text{ W/cm}^2)$ QED: $eE, eB > m_e^2 = (0.511 \text{ MeV})^2 \approx O(10^{29} \text{ W/cm}^2)$

Our limit

Impossible within the current tech. ⇒ New idea needed ⇒ HIC ?

1. Introduction to strong-field QED

2. Strong EM field in high-energy HIC

3. Strong EM field in middle-energy HIC

[Nishimura (Osaka), Ohnishi (Kyoto), HT, to appear soon]

4. Summary

Strong EM field at high-energy heavy-ion collisions

[See also talk by Xu]

Animation stolen from Internet

✔ Strong magnetic field is created

Strong EM field at high-energy heavy-ion collisions

[See also talk by Xu]

[Deng, Huang (2012)] See also [Bzdak, Skokov (2012)] [Hattori, Huang (2016)]

✔ Strong magnetic field is created

Pro: Super strong $eB \gg \Lambda_{\text{QCD}}^2$

Cons: Extremely short-lived ($\tau \ll 1$ fm/c)

⇒ Affects "non-perturbativeness" of strong-field physics

Shorter lifetime ⇒ more perturbative

Shorter lifetime ⇒ more perturbative

✔ Intuition: No time for multiple interactions

…

✔ "Phase diagram" of strong-field physics

As example: Vacuum particle prod. by E field w/ finite lifetime

- Three dimensionful parameters in the system: eE, τ, m
	- \Rightarrow Two dim.-less parameters determine the physics

$$
\gamma = \frac{m}{eE \tau} = \frac{(\text{Typical energy})}{(\text{Work by field})} \Rightarrow \text{Characterize the magnitude of work}
$$
\n
$$
\nu = \frac{eE \tau}{1/\tau} = \frac{(\text{Work by field})}{(\text{Photon energy})} \Rightarrow \text{Characterize the number of photons}
$$

 0.100

lifetime $m\tau$

 $10¹$

 0.001

 10^{-5}

- $\cdot \mathbf{y} \ll 1$, $\mathbf{v} \gg 1 \Rightarrow$ Non-perturbative v.s. $\mathbf{y} \gg 1$, $\mathbf{v} \ll 1 \Rightarrow$ perturbative
- High-energy HIC: $eF \sim (1 \text{ GeV})^2$, $\tau \sim 0.1 \text{ fm}/c \Rightarrow$ γ \sim $\}$ 10^{-3} $(m = \Lambda_{\text{QCD}})$ 10^{-5} $(m = m_e)$, $\nu \sim 0.1$

Shorter lifetime ⇒ more perturbative

✔ Intuition: No time for multiple interactions

…

✔ "Phase diagram" of strong-field physics

As example: Vacuum particle prod. by E field w/ finite lifetime

- Three dimensionful parameters in the system: eE, τ, m
	- \Rightarrow Two dim.-less parameters determine the physics

$$
\gamma = \frac{m}{eE \tau} = \frac{(\text{Typical energy})}{(\text{Work by field})} \Rightarrow \text{Characterize the magnitude of work}
$$

$$
\nu = \frac{eE \tau}{1/\tau} = \frac{(\text{Work by field})}{(\text{Photon energy})} \Rightarrow \text{Characterize the number of photons}
$$

lifetime $m\tau$

 $\cdot \mathbf{y} \ll 1$, $\mathbf{v} \gg 1 \Rightarrow$ Non-perturbative v.s. $\mathbf{y} \gg 1$, $\mathbf{v} \ll 1 \Rightarrow$ perturbative

• High-energy HIC:
$$
eF \sim (1 \text{ GeV})^2
$$
, $\tau \sim 0.1 \text{ fm}/c \Rightarrow \gamma \sim \begin{cases} 10^{-3} (m = \Lambda_{\text{QCD}}) \\ 10^{-5} (m = m_e) \end{cases}$, $\nu \sim 0.1$

High-energy HIC is short-lived ⇒ not useful for strong-field phys. in non-pert. regime

(actually, only NLO such as Breit-Wheeler have been observed in exp., with no signals of higher-order effects)

1. Introduction to strong-field QED

2. Strong EM field in high-energy HIC

3. Strong EM field in middle-energy HIC

[Nishimura (Osaka), Ohnishi (Kyoto), HT, to appear soon]

4. Summary

Strong EM field at middle-energy heavy-ion collisions

Numerical results with transport-model simulations

✔ Lower energy ⇒ Landau stopping picture

 $E = O(10 \text{ GeV/nucleon})$ 0.2 $T(GeV)$ 0.1 [Nara (1999; proc)] 0.0 0 5 10 15 ρ_B/ρ_0

Time evolution of baryon density and effective temperature in Au+Au at 11.6AGeV/c from 0 fm/c to 20 fm/c 1.0 fm/c step, Au+Au at 25AGeV, and Pb+Pb at 158AGeV, respectively.

Figure 1. Snapshot of 197 Au + 197 Au at $E_{lab} = 10$ MeV/nucleon $b = 6$ fm. The time indicated in each panel is not from the contact of two nuclei but indicates only that of the simulation.

[Maruyama, Bonasera, Papa, Chiba (2002)]

\Rightarrow Dense matter is formed for a long time $O(10-1000$ fm/c)

Strong EM field at middle-energy heavy-ion collisions

Numerical results with transport-model simulations

✔ Lower energy ⇒ Landau stopping picture

 $E = O(10 \text{ GeV/nucleon})$ 0.2 $T(GeV)$ 0.1 [Nara (1999; proc)] 0.0 0 5. 10 15 ρ_B/ρ_0

Time evolution of baryon density and effective temperature in Au+Au at 11.6AGeV/c from 0 fm/c to 20 fm/c 1.0 fm/c step, Au+Au at 25AGeV, and Pb+Pb at 158AGeV, respectively.

Figure 1. Snapshot of ¹⁹⁷Au + ¹⁹⁷Au at $E_{lab} = 10 \text{ MeV/nucleon } b = 6 \text{ fm.}$ The time indicated in each panel is not from the contact of two nuclei but indicates only that of the simulation.

[Maruyama, Bonasera, Papa, Chiba (2002)]

\Rightarrow Dense matter is formed for a long time $O(10-1000$ fm/c)

\Rightarrow **Charge density is also large ("High Z atom" s.t.** $Z \ge 1/\alpha$) \Rightarrow **Strong Coulomb field**

・ High energy ⇒ Magnetic vs Low/middle energy ⇒ Electric

• Rough order estimate:
$$
eE \sim \frac{Z\alpha}{r^2} \sim \Lambda_{\text{QCD}}^2 \sim (100 \text{ MeV})^2
$$

\n $\Rightarrow \gamma = \frac{m}{eE\tau} \leq \begin{cases} 10^{-1} \left(m = \Lambda_{\text{QCD}} \right) & 0.1, \nu = eE\tau^2 \geq 10 \\ 10^{-4} \left(m = m_e \right) & 0.1, \nu = eE\tau^2 \geq 10 \end{cases}$ **Non-pert both in QED & QCD** $\begin{cases} \gamma \ll 1 \\ \gamma \gg 1 \end{cases}$

Strong EM field at middle-energy heavy-ion collisions

Numerical results with transport-model simulations

✔ Lower energy ⇒ Landau stopping picture

 $E = O(10 \text{ GeV/nucleon})$ 0.2 $T(GeV)$ 0.1 [Nara (1999; proc)] 0.0 0 5 10 15 ρ_B/ρ_0

Time evolution of baryon density and effective temperature in $Au+Au$ at 11.6AGeV/c from 0 fm/c to 20 fm/c 1.0 fm/c step, Au+Au at 25AGeV, and Pb+Pb at 158AGeV, respectively.

 $E = O(10$ MeV/nucleon)

Figure 1. Snapshot of 197 Au + 197 Au at $E_{lab} = 10$ MeV/nucleon $b = 6$ fm. The time indicated in each panel is not from the contact of two nuclei but indicates only that of the simulation.

[Maruyama, Bonasera, Papa, Chiba (2002)]

\Rightarrow Dense matter is formed for a long time $O(10-1000$ fm/c)

⇒ Charge density is also large ("High Z atom" s.t. ≳ /) ⇒ Strong Coulomb field

・ High energy ⇒ Magnetic vs Low/middle energy ⇒ Electric

• Rough order estimate:
$$
eE \sim \frac{Z\alpha}{r^2} \sim \Lambda_{\text{QCD}}^2 \sim (100 \text{ MeV})^2
$$

\n $\Rightarrow \gamma = \frac{m}{eE\tau} \le \begin{cases} 10^{-1} \left(m = \Lambda_{\text{QCD}} \right) & 0.1, v = eE\tau^2 \ge 10 \\ 10^{-4} \left(m = m_e \right) & 0.1, v = eE\tau^2 \ge 10 \end{cases}$ **Non-pert both in QED & QCD** $\begin{cases} \gamma \ll 1 \\ \gamma \gg 1 \end{cases}$

∴ Interesting to strong-field physics. May affect QCD/hadron processes as well ! ⇒ Let's think about this possibility seriously

Estimation with a hadron trans. model: JAM (1/4)

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

✔ Simulation with JAM (Jet AA Microscopic transport model)

- INara, Otsuka, Ohnishi, Nitta, Chiba (2000)]
• A transport-model simulation of heavy-ion collisions \Leftarrow superposition of two-body hadron scatterings + inelastic scattering processes (e.g., string breaking with PYTHIA)
- ・ Anyway, **phase space distribution of charged particles** can be calculated

• Phase space dist. ⇒ EM field
\n
$$
A^{\mu}(x^0, x) = \frac{1}{4\pi} \int_{-\infty}^{+\infty} d^3 x' \frac{J^{\mu}(x^0 - |\pmb{x} - \pmb{x}'|, \pmb{x}')}{|\pmb{x} - \pmb{x}'|}
$$

Detail 1: The following results are after N=100 event averaging: $\langle A \rangle = \frac{1}{N} \sum_{n=1}^{N} A_n$

- **Detail 2:** I don't use Lienard-Wiechert potential for a point-like particle \Leftarrow LW pot. is inapplicable, since particles are produced / can decay during the evolution
- **Detail 3:** I smeared the point-like dist. of each hadron in JAM with (relativistic) Gaussian smearing with smearing width 1fm

Estimation with a hadron trans. model: JAM (2/4)

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

Huge charge density with a long lifetime time due to the stopping

• O(10) times bigger than charge density of a single static ion $\rho_{\text{\tiny{charge}}} \sim \rho_{\text{\tiny{nuclear}}}$ /2 ~ 0.08 fm^{−3}

saturation density

• Lifetime \sim O(20 fm/c)

Estimation with a hadron trans. model: JAM (3/4)

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

Field strength can be strong as $e^2F \sim (eE)^2 = O((50 \text{ MeV})^4)$

- \Rightarrow **• Very strong for QED** ($m_e = 0.511$ MeV)
	- Weak for QCD ($\Lambda_{\text{OCD}} = 200$ MeV), but should be non-negligible **(if deconfined, very strong for current quark mass)**

Estimation with a hadron trans. model: JAM (4/4)

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

Strong E field with $e^2 F \sim (eE)^2 \sim (30 \text{ MeV})^2$, **lifetime** $\tau \ge 20$ fm/c, volume $V \ge (15 \text{ fm})^3$

⇒ **Non-pert** for QED. **Non-linear** for QCD

1. Introduction to strong-field QED

2. Strong EM field in high-energy HIC

3. Strong EM field in middle-energy HIC

[Nishimura (Osaka), Ohnishi (Kyoto), HT, to appear soon]

4. Summary

Summary

Middle-energy heavy-ion collisions $\sqrt{s_{NN}} = O(1\text{-}10 \text{ GeV})$ is interesting **not only to QCD but also to strong-field QED**

Estimation of EM field strength and spacetime volume with a hadron transport model (JAM) \Rightarrow "strong" O(50 MeV) and large spacetime volume O((20 fm) 4)

⇒ a nice setup to study strong-field QED; non-negligible to hadronic/QCD processes as well

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

The current status of high-power laser

Weak !! Any nice idea ? ⇒ Heavy-ion collisions !

Estimation with a hadron trans. model: JAM (5/5)

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

✔ Non-central collision ⇒ B & E・B are produced

- $eE \cdot eB = O((50 \text{ MeV})^4)$ \Rightarrow Non-negligible for QCD (Enough strong for electron and current quarks)
- ・ Perhaps, a nice place to study chiral-anomaly-related stuffs

ex) chirality production via the Schwinger mechanism $N_5 = VT \frac{e \boldsymbol{E} \cdot e \boldsymbol{B}}{2\pi^2}$ $\sqrt{2\pi^2}$ exp $-\pi$ $m²$ eE