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This talk

Discuss the electric permittivity 𝝐 of the vacuum 
in a strong constant electric field

In the pure vacuum 𝒟 = ℰ In an EM field 𝒟 = 𝜖ℰ ≠ ℰ

～～ ～ ～

ഥ𝑬

・many studies since the early days, 

    but is still worthwhile to be investigated ⇒ 3 motivations

・ 𝜖 is no longer a const. 𝜖 = 𝜖( ത𝐸) due to the vacuum polarization

[Heisenberg-Euler (1936)] [Toll 1952] [Klein-Nigam (1964)] [Baier-Breitenlohner (1967)] …  
Review: [King-Heinzl 2015] [Ejlli et al. (PVLAS) 2020] …



The most famous formula = based on Euler-Heisenberg Lagrangian

𝜖 =
𝛼

45𝜋

𝑒 ത𝐸

𝑚2

2

× ቊ
6 (∥)
 2 (⊥)𝒟 = −

𝜕ℒEuler−Heisenberg

𝜕ℰ
⇒

[Baier-Breitenlohner (1967)]

Motivations (1/3)
(1) The current understanding is limited to weak/slow regime



Q: What happens if I go beyond those limitations ?

The most famous formula = based on Euler-Heisenberg Lagrangian

𝜖 =
𝛼

45𝜋

𝑒 ത𝐸

𝑚2

2

× ቊ
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[Baier-Breitenlohner (1967)]

Motivations (1/3)
(1) The current understanding is limited to weak/slow regime

Problem 1: Valid only in the weak limit 𝒆ഥ𝑬 ≪ 𝒎𝟐

power corrections could be included 𝑒 ത𝐸 𝑛, BUT

・is factorially divergent ⇒ does not necessarily improve the formula

・non-pert. factor like 𝑒1/𝑒 ത𝐸 can never be included
cf. [Heinzl-Schroder (2006)]

Problem 2: Valid only in the slow limit 𝝎 ≪ 𝒎

・not possible to discuss 𝜔 dependence

・the physics must be different above the pair-production threshold 𝜔 > 2𝑚

Problem 3: Neglecting the imaginary part 𝐈𝐦 𝓛𝐄𝐮𝐥𝐞𝐫−𝐇𝐞𝐢𝐬𝐞𝐧𝐛𝐞𝐫𝐠

𝜖 (in the coordinate space) must be real, so one must set Im ℒEuler−Heisenberg 

⇒ pair production and “non-equilibrium-ness” of E field are completely dismissed

cf. [King-Heinzl-Blackburn (2023)]



(2) As a signature of non-trivial QED vacuum structure in E field

Motivations (2/3)

← Dirac sea

← positive energy states

← mass gap ~ 2m 

QED vacuum at ഥ𝑬 = 𝟎 

The QED vacuum (= the Dirac sea) has a non-trivial electron dist. in an E field, 

which can leave observable imprints 
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E field direction 
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E field direction 

(2) As a signature of non-trivial QED vacuum structure in E field

Motivations (2/3)

electrons coming 

𝜓 ∝ 𝑒−i∫ d𝑧 𝑃

∝ 𝑒+i∫ d𝑧 𝑃

QED vacuum at ഥ𝑬 ≠ 𝟎 

reflected by the gap
Oscillation 

Observable imprint

The QED vacuum (= the Dirac sea) has a non-trivial electron dist. in an E field, 

which can leave observable imprints 

⇒

Ex.) spectrum of the dynamically-assisted Schwinger 
                       (= pair prod. in const ത𝐸 + fast probe ℰ)

probe frequency 𝜔/𝑚

Analytic 
(Furry picture)

Exact numerical 
results

interfered electron distribution

[HT (2019)] [Huang-HT (2020)]

∝ |# 𝑒+i∫ d𝑧 𝑃 +# 𝑒−i∫ d𝑧 𝑃 ቚ
2

∝ cos ∫ d𝑧 𝑃



E field direction 

(2) As a signature of non-trivial QED vacuum structure in E field

Motivations (2/3)

electrons coming 

𝜓 ∝ 𝑒−i∫ d𝑧 𝑃

∝ 𝑒+i∫ d𝑧 𝑃

QED vacuum at ഥ𝑬 ≠ 𝟎 

interfered electron distribution

reflected by the gap
Oscillation 

Observable imprint

The QED vacuum (= the Dirac sea) has a non-trivial electron dist. in an E field, 

which can leave observable imprints 

⇒

Ex.) spectrum of the dynamically-assisted Schwinger 
                       (= pair prod. in const ത𝐸 + fast probe ℰ)

probe frequency 𝜔/𝑚

Analytic 
(Furry picture)

Exact numerical 
results

Q: What happens to the electric permittivity ?

Note: The motivation (1) (in particular, going beyond 𝜔 ≪ 𝑚) is important to achieve this 

[HT (2019)] [Huang-HT (2020)]

∝ |# 𝑒+i∫ d𝑧 𝑃 +# 𝑒−i∫ d𝑧 𝑃 ቚ
2

∝ cos ∫ d𝑧 𝑃



(3) Pursue analogy between strong-field QED and semicond. phys

Motivations (3/3)

・ Ground-state structure of semicond.  =  The QED vacuum

     ⇒ the QED vacuum should response against external field in a similar way 
     to a semiconductor and vice versa



(3) Pursue analogy between strong-field QED and semicond. phys

Motivations (3/3)

・ Ground-state structure of semicond.  =  The QED vacuum

     

Δ
𝜖

≔
𝜖

𝑒
ത 𝐸

≠
0

−
𝜖(

𝑒
ത 𝐸

=
0

) [Yacoby (1966)] [Seraphin-Hess (1965)]

with Si

with Ge

Im
 Δ

𝜖

・ Nontrivial oscillating change in 𝜖 (i.e., motivation (2)) has already been observed 

     more than 50 yrs ago in semicond. physics ! 

     (⇒ the Franz-Keldysh effect and electroreflectance)

⇒ the QED vacuum should response against external field in a similar way 
     to a semiconductor and vice versa

probe frequency 𝜔

R
e 

Δ
𝜖

probe frequency 𝜔

Q: Natural to expect this change in QED.  To what extent is this true ?

[Franz (1958)] [Keldysh (1958)]



This talk
Discuss the electric permittivity 𝝐 of the vacuum 

in a strong constant electric field

II. Theory

III. Results

IV. Summary

Linear response theory based on in-in formalism of QFT 

+ Kramers-Kronig rel. + a “phenomenological” IR regularization
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Theory (1/5)
Linear response theory based on in-in formalism of QFT

Step 1: Definitions of 𝒟 and 𝜖

Setup: QED in the presence of a constant strong field ത𝐸 + a weak spatially homo. probe ℰ(𝑡) 

・ Total flux 𝐷 = 𝐸 + 𝑃( ത𝐸, ℰ) = 𝐸 + 𝑃0( ത𝐸) +𝑃1 ( ത𝐸)ℰ + ⋯

ത𝐸 + ℰ ⇒ 𝜖 = 1 +𝑃1 ( ത𝐸)= ത𝐸 + 𝑃0( ത𝐸) + (1 +𝑃1
ത𝐸 )ℰ + ⋯

𝒟
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Step 1: Definitions of 𝒟 and 𝜖

Setup: QED in the presence of a constant strong field ത𝐸 + a weak spatially homo. probe ℰ(𝑡) 

・ Total flux 𝐷 = 𝐸 + 𝑃( ത𝐸, ℰ) = 𝐸 + 𝑃0( ത𝐸) +𝑃1 ( ത𝐸)ℰ + ⋯

= 0; in| ത𝜓0
ത𝐸 𝛾𝜇𝜓0( ത𝐸)|0; in

 + 0; in| ത𝜓1
ത𝐸 𝛾𝜇𝜓0

ത𝐸 + ത𝜓0
ത𝐸 𝛾𝜇𝜓1( ത𝐸)|0; in × ℰ + 𝒪(ℰ2)

ത𝐸 + ℰ ⇒ 𝜖 = 1 +𝑃1 ( ത𝐸)= ത𝐸 + 𝑃0( ത𝐸) + (1 +𝑃1
ത𝐸 )ℰ + ⋯

Step 2: Calculate 𝑃1

・Ampere law: − ሶ𝑃 = 𝐽
𝑃1

・Not in-out amplitude, but in-in !

⇒ crucial when pair creating (or in non-equil.): 

cf. [Copinger-Fukushima (2018)]

ۧ|0; out = ۧ|0; in + (pair states like ۧ|𝑒+𝑒−; in )

= 0; in| ത𝜓( ത𝐸, ℰ)𝛾𝜇𝜓( ത𝐸, ℰ)|0; in

𝒟



Theory (1/5)
Linear response theory based on in-in formalism of QFT

Step 1: Definitions of 𝒟 and 𝜖

Setup: QED in the presence of a constant strong field ത𝐸 + a weak spatially homo. probe ℰ(𝑡) 

・ Total flux 𝐷 = 𝐸 + 𝑃( ത𝐸, ℰ) = 𝐸 + 𝑃0( ത𝐸) +𝑃1 ( ത𝐸)ℰ + ⋯

= 0; in| ത𝜓0
ത𝐸 𝛾𝜇𝜓0( ത𝐸)|0; in

 + 0; in| ത𝜓1
ത𝐸 𝛾𝜇𝜓0

ത𝐸 + ത𝜓0
ത𝐸 𝛾𝜇𝜓1( ത𝐸)|0; in × ℰ + 𝒪(ℰ2)

ത𝐸 + ℰ ⇒ 𝜖 = 1 +𝑃1 ( ത𝐸)= ത𝐸 + 𝑃0( ത𝐸) + (1 +𝑃1
ത𝐸 )ℰ + ⋯

Step 2: Calculate 𝑃1

・Ampere law: − ሶ𝑃 = 𝐽
𝑃1

・Not in-out amplitude, but in-in !

⇒ crucial when pair creating (or in non-equil.): 

cf. [Copinger-Fukushima (2018)]

ۧ|0; out = ۧ|0; in + (pair states like ۧ|𝑒+𝑒−; in )

= 0; in| ത𝜓( ത𝐸, ℰ)𝛾𝜇𝜓( ത𝐸, ℰ)|0; in

Step 3: Calculate 𝜓0 and 𝜓1

・Solve Dirac eq. in E field: 

𝑖𝜕 − 𝑒( ҧ𝐴 + 𝒜) − 𝑚 𝜓 = 0 ⇒ 𝜓 = 𝜓0
ത𝐸 + 𝑆R

ത𝐸 𝑒𝒜𝜓0
ത𝐸 + 𝒪(ℰ2)

𝒟

𝜓1

/ / / /



Theory (2/5)
Linear response theory based on in-in formalism of QFT

Step 4: Collect everything + massaging …

𝜖𝑖𝑗 𝜔 = 1 +
1

𝜔2
න

−∞

+∞

d𝜏 ei𝜔𝜏Θ 𝜏 Πij(𝜏)  ≃  1 + 

Point 1: No Feynman propagator (∵ in-in calculation )

Point 2: Manifestly causal

where Πij 𝜏 ≔ 2𝑒2Im tr ෍

𝑠,𝑠′

න
d3𝒑

2𝜋 3
𝛾𝑖𝑆𝒑,𝑠

− (+
𝜏

2
, −

𝜏

2
)𝛾𝑗𝑆𝒑,𝑠

+ (−
𝜏

2
, +

𝜏

2
)

𝛾𝑖 𝛾𝑗

𝑆𝒑,𝑠
−

𝑆𝒑,𝑠
+

𝑆𝒑,𝑠
± ≔ 0; in| ത𝜓0,𝒑,𝑠

± 𝜓0,𝒑,𝑠
± |0; in w/ 𝜓0 = ෍

𝒑,𝑠

(𝜓0,𝒑,𝑠
+ + 𝜓0,𝒑,𝑠

− ) 

𝜖 𝑡 ∝ 𝑆R(𝑡) ∝ Θ(𝑡)
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Step 4: Collect everything + massaging …

𝜖𝑖𝑗 𝜔 = 1 +
1
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Point 1: No Feynman propagator (∵ in-in calculation )
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where Πij 𝜏 ≔ 2𝑒2Im tr ෍
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න
d3𝒑
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𝛾𝑖𝑆𝒑,𝑠

− (+
𝜏

2
, −

𝜏

2
)𝛾𝑗𝑆𝒑,𝑠

+ (−
𝜏

2
, +

𝜏

2
)

𝛾𝑖 𝛾𝑗

𝑆𝒑,𝑠
−

𝑆𝒑,𝑠
+

𝑆𝒑,𝑠
± ≔ 0; in| ത𝜓0,𝒑,𝑠

± 𝜓0,𝒑,𝑠
± |0; in w/ 𝜓0 = ෍

𝒑,𝑠

(𝜓0,𝒑,𝑠
+ + 𝜓0,𝒑,𝑠

− ) 

Step 5: Do the integrations !  ⇒ But it is not straightforward

𝜖 𝑡 ∝ 𝑆R(𝑡) ∝ Θ(𝑡)

Problem 1: UV divergence (∵ loop diagram)

Problem 2: IR divergence (∵ the LO treatment in ℰ breaks down, 
                                                     since the non-linearity parameter 𝜉 ≔ Τ𝑒𝒜 𝑚 ≃ Τ𝑒ℰ 𝜔 → ∞ )
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Idea: (1) Only the real part is UV divergent, and the imaginary part is finite and calculable

Theory (3/5)
Linear response theory based on in-in formalism of QFT

=Im

2

cf. Cutkosky rule



Step 6: Use Kramers-Kronig relation

[Toll (1960)]   See also [Heinzl, Schroeder (2006)] [Borysov et al. (2022)] for nBW

                                       [Aspnes (1967)] for semicond.

Re 𝜖(𝜔) =
1

𝜋
P. V. න

−∞

+∞

d𝜔′
1

𝜔′ − 𝜔
Im 𝜖(𝜔′)

Idea: (1) Only the real part is UV divergent, and the imaginary part is finite and calculable

∴  It is sufficient to calculate the imaginary part, which does not suffer from UV div.

𝜖𝑖𝑗 𝜔 = 1 +
1

𝜔2 ∫−∞

+∞
d𝜏 ei𝜔𝜏Θ 𝜏 Πij(𝜏) ⇒ 

Causality = the step function is the essence (for in-in response functions) 

(not unitarity, unlike the optical theorem for in-out amplitudes)

Theory (3/5)
Linear response theory based on in-in formalism of QFT

=Im

2

cf. Cutkosky rule

(2) Due to causality, Re and Im are related with each other 

     (Kramers-Kronig relation)



Step 7: Introduce a counter term and match it with Schwinger formula
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Step 7: Introduce a counter term and match it with Schwinger formula

Idea: (1) In general, resummation gives a counter term Δ𝜖

(2) Resum. not easy ⇒ determine Δ𝜖 phenomenologically by matching 𝜖reg w/ smth known

cf. see Landau-Lefshitz

Theory (4/5)
Linear response theory based on in-in formalism of QFT

⇒  𝜖 → 𝜖reg = 𝜖 + Δ𝜖

(3) Use relationship between Im 𝜖 and the Schwinger effect (by 𝐸 = ത𝐸 + ℰ )

Intuitive explanation: analog of electromagnetism in matter

・Dielectric energy loss (= decay of a probe)
d𝑈loss

d𝑡
= ℰ

d𝒟

d𝑡
=

1

2
𝜔ℰ2 Im 𝜖reg

・Microscopically, the decay of a probe is caused by the pair production

⇒ Energy for pair prod. 
d𝑈pp

d𝑡
= 𝜔

𝑁 ℰ≠0 −𝑁(ℰ=0)

𝑉𝑇
must equal to 𝑈loss

⇒
𝑁 ℰ ≠ 0 − 𝑁(ℰ = 0)

𝑉𝑇
=

1

2
ℰ2 Im 𝜖reg
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Theory (4/5)
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⇒  𝜖 → 𝜖reg = 𝜖 + Δ𝜖

(3) Use relationship between Im 𝜖 and the Schwinger effect (by 𝐸 = ത𝐸 + ℰ )

(4) LHS at 𝜔 → 0 can be calculated with the Schwinger formula, so Δ𝜖 can be fixed  

Intuitive explanation: analog of electromagnetism in matter

・Dielectric energy loss (= decay of a probe)
d𝑈loss

d𝑡
= ℰ

d𝒟

d𝑡
=

1

2
𝜔ℰ2 Im 𝜖reg

・Microscopically, the decay of a probe is caused by the pair production

⇒ Energy for pair prod. 
d𝑈pp

d𝑡
= 𝜔

𝑁 ℰ≠0 −𝑁(ℰ=0)

𝑉𝑇
must equal to 𝑈loss

⇒
𝑁 ℰ ≠ 0 − 𝑁(ℰ = 0)

𝑉𝑇
=

1

2
ℰ2 Im 𝜖reg

𝑁Schwinger
ത𝐸 + ℰ − 𝑁Schwinger

ത𝐸 ∝ exp −𝜋
𝑚2

𝑒 ത𝐸 + ℰ
− exp −𝜋

𝑚2

𝑒 ത𝐸
= … × exp −𝜋

𝑚2

𝑒 ത𝐸
× ℰ2



Schwinger 𝑁   Im 𝜖 Re 𝜖
KK

Theory (5/5)

Linear response theory based on in-in formalism of QFT

𝜖𝑖𝑗 𝜔 = 1 +
1

𝜔2 න
−∞

+∞

d𝜏 ei𝜔𝜏Θ 𝜏 Πij(𝜏)  ≃  1 + 
𝛾𝑖 𝛾𝑗

𝑆𝒑,𝑠
−

𝑆𝒑,𝑠
+
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Results (1/4)

・ Oscillation, as expected from the tilted vacuum

・ Non-vanishing even at 𝜔 → 0 due to the non-perturbative pair production (Schwinger)

・ Birefringent (Im Δ𝜖∥ ≠ Im Δ𝜖⊥) but basically the same

Strong ത𝐸 Strong ത𝐸

～～ ～
～

Imaginary part of the change 𝚫𝝐 = 𝝐 ഥ𝑬 ≠ 𝟎 − 𝝐(ഥ𝑬 = 𝟎)

Probe ℰ
Probe ℰ

・ Essentially the same as what have observed in semiconductor physics

∵ Im 𝜖(𝜔 → 0)  ∝ (𝑁Schwinger
ത𝐸 + ℰ − 𝑁Schwinger

ത𝐸 ) ∝ (exp −𝜋
𝑚2

𝑒( ത𝐸+ℰ)
− exp[−𝜋

𝑚2

𝑒 ത𝐸
]) = (finite) × exp −𝜋

𝑚2

𝑒 ത𝐸



・ Again oscillation, which is again consistent with semi-conductor

・ Logarithmically divergent at 𝜔 → 0 due to the non-pert. pair prod.

Strong ത𝐸 Strong ത𝐸

～～ ～
～

Real part of the change 𝚫𝝐 = 𝝐 ഥ𝑬 ≠ 𝟎 − 𝝐(ഥ𝑬 = 𝟎)

Probe ℰ
Probe ℰ

Results (2/4)

Re 𝜖 0 =
1

𝜋
P. V. ∫−∞

+∞
d𝜔′ 1

𝜔′ Im 𝜖 𝜔′ ∼
1

𝜋
∫−∞

+∞
d𝜔′ 1

𝜔′ Im 𝜖 0 ∼ log div. × exp −𝜋
𝑚2

𝑒 ത𝐸
∵

⇒ a “matter” effect, which needs to be subtracted to compare with 
     the Euler-Heisenberg result



・ The agreement becomes very good for weak fields Τ𝑒 ത𝐸 𝑚2 < 0.2
     but EH underestimates about O(>10%) for strong fields

・ After the log subtraction, the result is consistent with the EH result 

Strong ത𝐸 Strong ത𝐸

～～ ～
～

Comparison w/ EH result around 𝝎 ≈ 𝟎

Probe ℰ
Probe ℰ

Results (3/4)

~

Δ𝜖EH =
𝛼

45𝜋

𝑒 ത𝐸

𝑚2

2

× ቊ
6 (∥)
 2 (⊥)



・much larger than EH 

   ⇒ High-frequency probe is useful to study 𝜖 (or vacuum birefringence, in general)

Numerical fit says (similar numbers for Im 𝜖⊥ and Re 𝜖∥,⊥)

Behaviors of the peaks

Results (4/4)

・weak E dependence Δ𝜖 ∝ 𝐼
1

5
~

1

6 ⇒  the peaks of Δ𝜖 can still be large for subcritical fields 

where 𝐼 = ത𝐸2/2 is the focused intensity

e.g., Δ𝜖EH = 𝑂(10−7) for 𝐼 = 𝑂(1 × 1023 W/cm2) (PW laser)

e.g., only one-order smaller Δ𝜖 = 𝑂 1 × 10−5 ≫ Δ𝜖EH at GW scale



This talk
Discuss the electric permittivity 𝝐 of the vacuum 

in a strong constant electric field

II. Theory

III. Results

IV. Summary

Linear response theory based on in-in formalism of QFT 

+ Kramers-Kronig rel. + a “phenomenological” IR regularization

Will give positive statements to the motivations (1) - (3)

(2) As a signature of non-trivial QED vacuum structure in E field

(3) Pursue analogy between strong-field QED and semicond. phys

(1) The current understanding is limited to weak/slow regime

I. Introduction



Summary
Discussed the electric permittivity 𝝐 of the vacuum 

in a strong constant electric field

⇒ Succeeded in developing such a theory: 

     Linear response theory based on in-in formalism of QFT 

     + Kramers-Kronig rel. + a “phenomenological” IR regularization

(2) As a signature of non-trivial QED vacuum structure in E field

(3) Pursue analogy between strong-field QED and semicond. phys

(1) The current understanding is limited to weak/slow regime

3 motivations and answers to them: 

⇒ Yes: a characteristic oscillating structure in 𝜖 and is analogous to semicond.
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