## Electric permittivity of the vacuum in a strong constant electric field

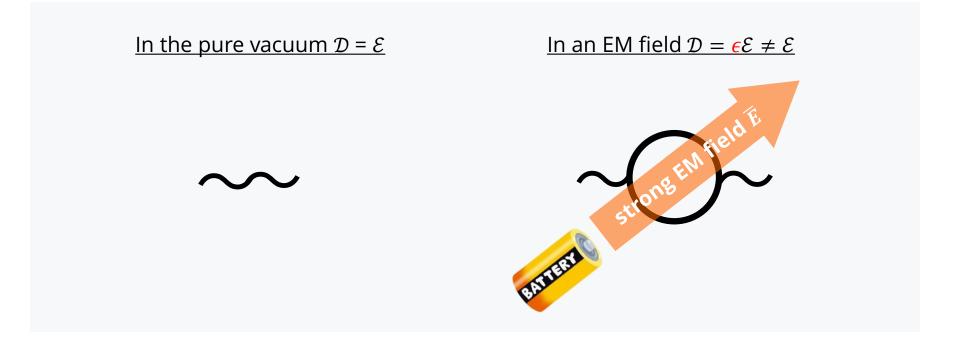
## Hidetoshi Taya

RIKEN  $\rightarrow$  Keio U. (from April)

HT, C. Ironside, PRD 108, 096005 (2023) [2308.11248]

## <u>This talk</u>

# Discuss the electric permittivity $\epsilon$ of the vacuum in a strong constant electric field



- $\epsilon$  is no longer a const.  $\epsilon = \epsilon(\overline{E})$  due to the vacuum polarization
- many studies since the early days, [Heisenberg-Euler (1936)] [Toll 1952] [Klein-Nigam (1964)] [Baier-Breitenlohner (1967)] ... Review: [King-Heinzl 2015] [Ejlli et al. (PVLAS) 2020] ...
   but is still worthwhile to be investigated ⇒ 3 motivations

### (1) The current understanding is limited to weak/slow regime

The most famous formula = based on Euler-Heisenberg Lagrangian

$$\mathcal{D} = -\frac{\partial \mathcal{L}_{\text{Euler-Heisenberg}}}{\partial \mathcal{E}} \implies \epsilon = \frac{\alpha}{45\pi} \left(\frac{e\bar{E}}{m^2}\right)^2 \times \begin{cases} 6 \quad (\parallel) \\ 2 \quad (\perp) \end{cases}$$
[Baier-Breitenlohner (1967)]

### (1) The current understanding is limited to weak/slow regime

The most famous formula = based on Euler-Heisenberg Lagrangian

$$D = -\frac{\partial \mathcal{L}_{\text{Euler-Heisenberg}}}{\partial \mathcal{E}} \implies \epsilon = \frac{\alpha}{45\pi} \left(\frac{e\bar{E}}{m^2}\right)^2 \times \begin{cases} 6 \quad (\parallel) \\ 2 \quad (\perp) \end{cases}$$
[Baier-Breitenlohner (1967)]

#### <u>Problem 1: Valid only in the weak limit $e\overline{E} \ll m^2$ </u>

power corrections could be included  $(e\overline{E})^n$ , BUT

- is factorially divergent  $\Rightarrow$  does not necessarily improve the formula
- non-pert. factor like  $e^{1/e\overline{E}}$  can never be included

#### <u>Problem 2: Valid only in the slow limit $\omega \ll m$ </u>

- not possible to discuss  $\omega$  dependence
- the physics must be different above the pair-production threshold  $\omega > 2m$

#### **Problem 3:** Neglecting the imaginary part Im $\mathcal{L}_{Euler-Heisenberg}$

- $\epsilon$  (in the coordinate space) must be real, so one must set Im  $\mathcal{L}_{ ext{Euler-Heisenberg}}$
- $\Rightarrow$  pair production and "non-equilibrium-ness" of E field are completely dismissed

#### Q: What happens if I go beyond those limitations?









cf. [King-Heinzl-Blackburn (2023)]



### (2) As a signature of non-trivial QED vacuum structure in E field

The QED vacuum (= the Dirac sea) has a non-trivial electron dist. in an E field, which can leave observable imprints

**QED** vacuum at  $\overline{E} = 0$ 

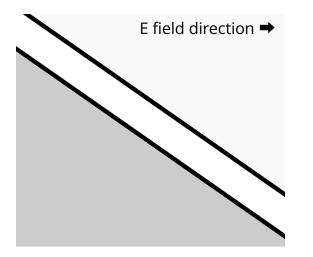
← positive energy states

← mass gap ~ 2m

← Dirac sea

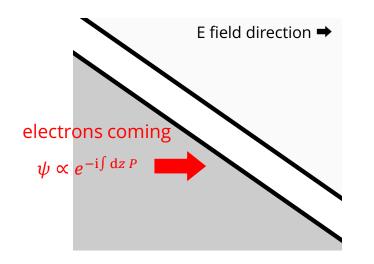
### (2) As a signature of non-trivial QED vacuum structure in E field

The QED vacuum (= the Dirac sea) has a non-trivial electron dist. in an E field, which can leave observable imprints



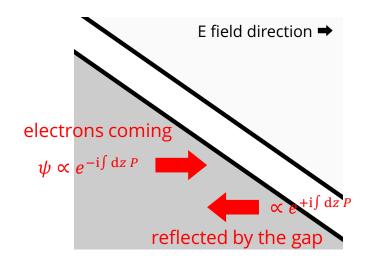
### (2) As a signature of non-trivial QED vacuum structure in E field

The QED vacuum (= the Dirac sea) has a non-trivial electron dist. in an E field, which can leave observable imprints



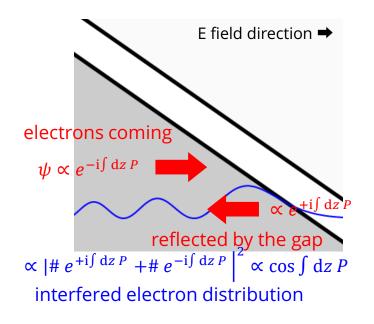
### (2) As a signature of non-trivial QED vacuum structure in E field

The QED vacuum (= the Dirac sea) has a non-trivial electron dist. in an E field, which can leave observable imprints



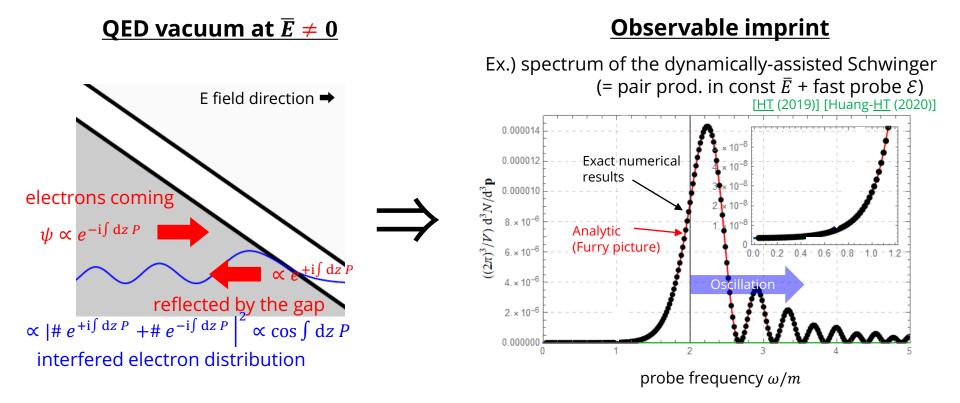
### (2) As a signature of non-trivial QED vacuum structure in E field

The QED vacuum (= the Dirac sea) has a non-trivial electron dist. in an E field, which can leave observable imprints



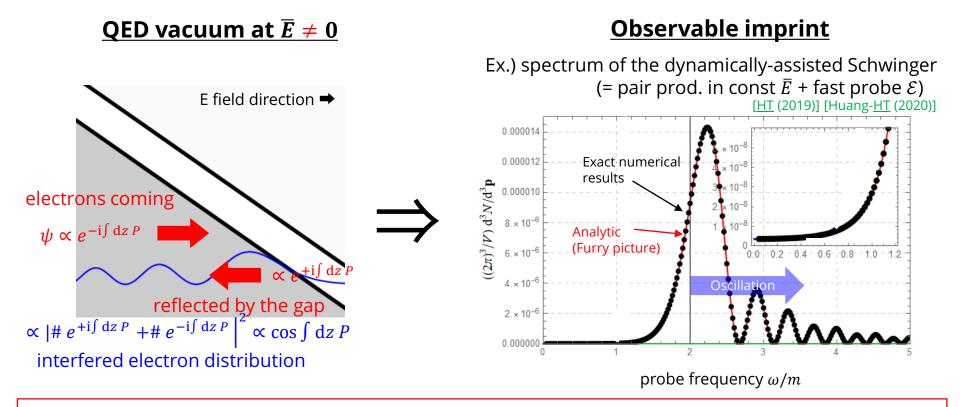
### (2) As a signature of non-trivial QED vacuum structure in E field

The QED vacuum (= the Dirac sea) has a non-trivial electron dist. in an E field, which can leave observable imprints



### (2) As a signature of non-trivial QED vacuum structure in E field

The QED vacuum (= the Dirac sea) has a non-trivial electron dist. in an E field, which can leave observable imprints



#### **Q: What happens to the electric permittivity ?**

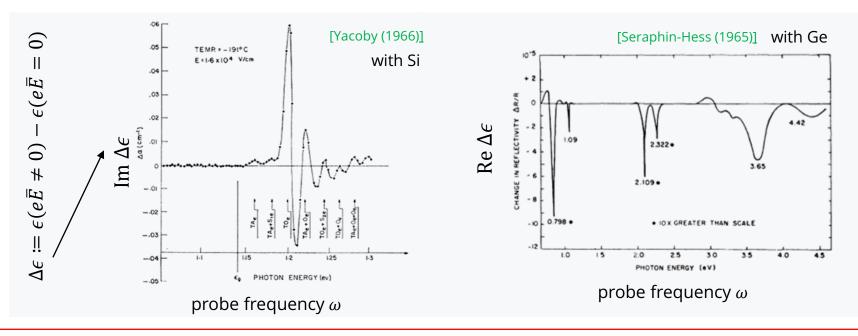
Note: The motivation (1) (in particular, going beyond  $\omega \ll m$ ) is important to achieve this

### (3) Pursue analogy between strong-field QED and semicond. phys

- Ground-state structure of semicond. = The QED vacuum
  - ⇒ the QED vacuum should response against external field in a similar way to a semiconductor and vice versa

### (3) Pursue analogy between strong-field QED and semicond. phys

- Ground-state structure of semicond. = The QED vacuum
  - ⇒ the QED vacuum should response against external field in a similar way to a semiconductor and vice versa
- Nontrivial oscillating change in ε (i.e., motivation (2)) has already been observed more than 50 yrs ago in semicond. physics !
   (⇒ the Franz-Keldysh effect and electroreflectance) [Franz (1958)] [Keldysh (1958)]



Q: Natural to expect this change in QED. To what extent is this true?

# <u>This talk</u>

# Discuss the electric permittivity $\epsilon$ of the vacuum in a strong constant electric field

### I. Introduction

(1) The current understanding is limited to weak/slow regime

(2) As a signature of non-trivial QED vacuum structure in E field

(3) Pursue analogy between strong-field QED and semicond. phys

**II. Theory** Linear response theory based on in-in formalism of QFT + Kramers-Kronig rel. + a "phenomenological" IR regularization

**III. Results** Will give positive statements to the motivations (1) - (3)

### **IV. Summary**

## **Theory (1/5)**

### Linear response theory based on in-in formalism of QFT

# **Theory (1/5)**

### Linear response theory based on in-in formalism of QFT

**Setup**: QED in the presence of a constant strong field  $\overline{E}$  + a weak spatially homo. probe  $\mathcal{E}(t)$ 

# **Theory (1/5)**

### Linear response theory based on in-in formalism of QFT

**Setup**: QED in the presence of a constant strong field  $\overline{E}$  + a weak spatially homo. probe  $\mathcal{E}(t)$ 

**Step 1**: Definitions of  $\mathcal{D}$  and  $\epsilon$ 

• Total flux 
$$D = E + P(\overline{E}, \mathcal{E}) = E + P_0(\overline{E}) + P_1(\overline{E})\mathcal{E} + \cdots$$
  
 $\nabla \overline{E} + \mathcal{E} = \overline{E} + P_0(\overline{E}) + (1 + P_1(\overline{E}))\mathcal{E} + \cdots$   $\Rightarrow \epsilon = 1 + P_1(\overline{E})$ 

# <u>Theory (1/5)</u>

### Linear response theory based on in-in formalism of QFT

**Setup**: QED in the presence of a constant strong field  $\overline{E}$  + a weak spatially homo. probe  $\mathcal{E}(t)$ 

**Step 1**: Definitions of  $\mathcal{D}$  and  $\epsilon$ 

• Total flux 
$$D = E + P(\overline{E}, \mathcal{E}) = E + P_0(\overline{E}) + P_1(\overline{E})\mathcal{E} + \cdots$$
  
 $\nabla \overline{E} + \mathcal{E} = \overline{E} + P_0(\overline{E}) + (1 + P_1(\overline{E}))\mathcal{E} + \cdots$   $\Rightarrow \epsilon = 1 + P_1(\overline{E})$ 

#### Step 2: Calculate P<sub>1</sub>

• Ampere law: 
$$-\dot{P} = J = \langle 0; \text{ in} | \bar{\psi}(\bar{E}, \mathcal{E}) \gamma^{\mu} \psi(\bar{E}, \mathcal{E}) | 0; \text{ in} \rangle$$
  
 $= \langle 0; \text{ in} | \bar{\psi}_0(\bar{E}) \gamma^{\mu} \psi_0(\bar{E}) | 0; \text{ in} \rangle$   
 $+ \langle 0; \text{ in} | \bar{\psi}_1(\bar{E}) \gamma^{\mu} \psi_0(\bar{E}) + \bar{\psi}_0(\bar{E}) \gamma^{\mu} \psi_1(\bar{E}) | 0; \text{ in} \rangle \times \mathcal{E} + \mathcal{O}(\mathcal{E}^2)$   
• Not in-out amplitude, but in-in ! cf. [Copinger-Fukushima (2018)]

 $\Rightarrow$  crucial when pair creating (or in non-equil.):  $|0; \text{out}\rangle = |0; \text{in}\rangle + (\text{pair states like } |e^+e^-; \text{in}\rangle)$ 

# <u>Theory (1/5)</u>

### Linear response theory based on in-in formalism of QFT

**Setup**: QED in the presence of a constant strong field  $\overline{E}$  + a weak spatially homo. probe  $\mathcal{E}(t)$ 

**Step 1**: Definitions of  $\mathcal{D}$  and  $\epsilon$ 

• Total flux 
$$D = E + P(\overline{E}, \mathcal{E}) = E + P_0(\overline{E}) + P_1(\overline{E})\mathcal{E} + \cdots$$
  
 $\nabla \overline{E} + \mathcal{E} = \overline{E} + P_0(\overline{E}) + (1 + P_1(\overline{E}))\mathcal{E} + \cdots$   $\Rightarrow \epsilon = 1 + P_1(\overline{E})$ 

#### Step 2: Calculate P<sub>1</sub>

• Ampere law: 
$$-\dot{P} = J = \langle 0; \text{ in} | \bar{\psi}(\bar{E}, \mathcal{E}) \gamma^{\mu} \psi(\bar{E}, \mathcal{E}) | 0; \text{ in} \rangle$$
  
 $= \langle 0; \text{ in} | \bar{\psi}_0(\bar{E}) \gamma^{\mu} \psi_0(\bar{E}) | 0; \text{ in} \rangle$   
 $+ \langle 0; \text{ in} | \bar{\psi}_1(\bar{E}) \gamma^{\mu} \psi_0(\bar{E}) + \bar{\psi}_0(\bar{E}) \gamma^{\mu} \psi_1(\bar{E}) | 0; \text{ in} \rangle \times \mathcal{E} + \mathcal{O}(\mathcal{E}^2)$ 

• Not in-out amplitude, but in-in ! cf. [Copinger-Fukushima (2018)]  $\Rightarrow$  crucial when pair creating (or in non-equil.):  $|0; \text{out}\rangle = |0; \text{in}\rangle + (\text{pair states like } |e^+e^-; \text{in}\rangle)$ 

#### **Step 3**: Calculate $\psi_0$ and $\psi_1$

• Solve Dirac eq. in E field:  $[i\partial - e(\bar{A} + \bar{A}) - m]\psi = 0 \Rightarrow \psi = \psi_0(\bar{E}) + S_R(\bar{E})eA\psi_0(\bar{E}) + O(\mathcal{E}^2)$ 

## **Theory (2/5)**

### Linear response theory based on in-in formalism of QFT

**Step 4**: Collect everything + massaging ...

$$\epsilon_{ij}(\omega) = 1 + \frac{1}{\omega^2} \int_{-\infty}^{+\infty} d\tau \ e^{i\omega\tau} \Theta(\tau) \Pi_{ij}(\tau) \simeq 1 + \bigvee_{s_{p,s}}^{\gamma^i} \bigvee_{s_{p,s}}^{\gamma^j} \Psi_{s_{p,s}}^{\gamma^j}$$
where  $\Pi_{ij}(\tau) \coloneqq 2e^2 \operatorname{Im} \operatorname{tr} \sum_{s,s'} \int \frac{d^3 p}{(2\pi)^3} \gamma^i S_{p,s}^{-}(+\frac{\tau}{2}, -\frac{\tau}{2}) \gamma^j S_{p,s}^{+}(-\frac{\tau}{2}, +\frac{\tau}{2})$ 
 $S_{p,s}^{\pm} \coloneqq \langle 0; \operatorname{in} | \bar{\psi}_{0,p,s}^{\pm} \psi_{0,p,s}^{\pm} | 0; \operatorname{in} \rangle \quad \text{w/} \quad \psi_0 = \sum_{p,s} (\psi_{0,p,s}^{+} + \psi_{0,p,s}^{-})$ 

**Point 1:** No Feynman propagator ( $\because$  in-in calculation) **Point 2:** Manifestly causal  $\epsilon(t) \propto S_{\rm R}(t) \propto \Theta(t)$ 

## <u>Theory (2/5)</u>

### Linear response theory based on in-in formalism of QFT

**Step 4**: Collect everything + massaging ...

$$\epsilon_{ij}(\omega) = 1 + \frac{1}{\omega^2} \int_{-\infty}^{+\infty} d\tau \ e^{i\omega\tau} \Theta(\tau) \Pi_{ij}(\tau) \simeq 1 + \bigvee_{s_{p,s}}^{\gamma^i} \bigvee_{s_{p,s}}^{\gamma^j} \Psi_{s_{p,s}}^{\gamma^j}$$
where  $\Pi_{ij}(\tau) \coloneqq 2e^2 \operatorname{Im} \operatorname{tr} \sum_{s,s'} \int \frac{d^3 p}{(2\pi)^3} \gamma^i S_{p,s}^{-}(+\frac{\tau}{2}, -\frac{\tau}{2}) \gamma^j S_{p,s}^{+}(-\frac{\tau}{2}, +\frac{\tau}{2})$ 
 $S_{p,s}^{\pm} \coloneqq \langle 0; \operatorname{in} | \bar{\psi}_{0,p,s}^{\pm} \psi_{0,p,s}^{\pm} | 0; \operatorname{in} \rangle \qquad W/ \quad \psi_0 = \sum_{p,s} (\psi_{0,p,s}^{+} + \psi_{0,p,s}^{-})$ 

Point 1: No Feynman propagator (  $\because$  in-in calculation )

**Point 2:** Manifestly causal  $\epsilon(t) \propto S_{R}(t) \propto \Theta(t)$ 

**Step 5**: Do the integrations  $! \Rightarrow$  But it is not straightforward

**Problem 1:** UV divergence ( $\because$  loop diagram) **Problem 2:** IR divergence ( $\because$  the LO treatment in  $\mathcal{E}$  breaks down, since the non-linearity parameter  $\xi \coloneqq e\mathcal{A}/m \simeq e\mathcal{E}/\omega \rightarrow \infty$ )

## **Theory (3/5)**

### Linear response theory based on in-in formalism of QFT

Step 6: Use Kramers-Kronig relation

# **Theory (3/5)**

### Linear response theory based on in-in formalism of QFT

**Step 6:** Use Kramers-Kronig relation

Idea: (1) Only the real part is UV divergent, and the imaginary part is finite and calculable

Im 
$$(f. Cutkosky rule)$$

# **Theory (3/5)**

### Linear response theory based on in-in formalism of QFT

Step 6: Use Kramers-Kronig relation

Idea: (1) Only the real part is UV divergent, and the imaginary part is finite and calculable

Im 
$$(f, Cutkosky rule)$$

(2) Due to causality, Re and Im are related with each other

(Kramers-Kronig relation) [Toll (1960)] See also [Heinzl, Schroeder (2006)] [Borysov et al. (2022)] for nBW [Aspnes (1967)] for semicond.

$$\epsilon_{ij}(\omega) = 1 + \frac{1}{\omega^2} \int_{-\infty}^{+\infty} d\tau \, \mathrm{e}^{\mathrm{i}\omega\tau} \Theta(\tau) \Pi_{ij}(\tau) \Rightarrow \, \mathrm{Re} \, \epsilon(\omega) = \frac{1}{\pi} \mathrm{P.V.} \int_{-\infty}^{+\infty} d\omega' \frac{1}{\omega' - \omega} \mathrm{Im} \, \epsilon(\omega')$$

Causality = the step function is the essence (for in-in response functions) (not unitarity, unlike the optical theorem for in-out amplitudes)

 $\therefore$  It is sufficient to calculate the imaginary part, which does not suffer from UV div.



### Linear response theory based on in-in formalism of QFT

Step 7: Introduce a counter term and match it with Schwinger formula

## **Theory (4/5)**

### Linear response theory based on in-in formalism of QFT

Step 7: Introduce a counter term and match it with Schwinger formula

**Idea:** (1) In general, resummation gives a counter term  $\Delta \epsilon$ 

$$\bigcirc + \bigcirc + \bigcirc + \bigcirc + \cdots \implies \epsilon \rightarrow \epsilon_{\text{reg}} = \epsilon + \Delta \epsilon$$

(2) Resum. not easy  $\Rightarrow$  determine  $\Delta \epsilon$  phenomenologically by matching  $\epsilon_{reg}$  w/ smth known

# <u>Theory (4/5)</u>

### Linear response theory based on in-in formalism of QFT

Step 7: Introduce a counter term and match it with Schwinger formula

**Idea:** (1) In general, resummation gives a counter term  $\Delta \epsilon$ 

$$\bigcirc + \bigcirc + \bigcirc + \bigcirc + \cdots \Rightarrow \epsilon \rightarrow \epsilon_{\text{reg}} = \epsilon + \Delta \epsilon$$

(2) Resum. not easy  $\Rightarrow$  determine  $\Delta \epsilon$  phenomenologically by matching  $\epsilon_{reg}$  w/ smth known

(3) Use relationship between Im  $\epsilon$  and the Schwinger effect (by  $E = \overline{E} + \mathcal{E}$ )

Intuitive explanation: analog of electromagnetism in matter

- Dielectric energy loss (= decay of a probe)  $\frac{dU_{loss}}{dt} = \mathcal{E} \frac{d\mathcal{D}}{dt} = \frac{1}{2}\omega\mathcal{E}^2 \operatorname{Im} \epsilon_{reg}$
- Microscopically, the decay of a probe is caused by the pair production

$$\Rightarrow$$
 Energy for pair prod.  $\frac{dU_{pp}}{dt} = \omega \frac{N(\mathcal{E}\neq 0) - N(\mathcal{E}=0)}{VT}$  must equal to  $U_{loss}$ 

$$\Rightarrow \frac{N(\mathcal{E} \neq 0) - N(\mathcal{E} = 0)}{VT} = \frac{1}{2}\mathcal{E}^2 \operatorname{Im} \epsilon_{\operatorname{reg}}$$

Charge +Q +Q dielectric Field E Plate separation d

cf. see Landau-Lefshitz

# <u>Theory (4/5)</u>

### Linear response theory based on in-in formalism of QFT

Step 7: Introduce a counter term and match it with Schwinger formula

**Idea:** (1) In general, resummation gives a counter term  $\Delta \epsilon$ 

$$\bigcirc + \bigcirc + \bigcirc + \bigcirc + \cdots \Rightarrow \epsilon \rightarrow \epsilon_{\text{reg}} = \epsilon + \Delta \epsilon$$

(2) Resum. not easy  $\Rightarrow$  determine  $\Delta \epsilon$  phenomenologically by matching  $\epsilon_{reg}$  w/ smth known

(3) Use relationship between Im  $\epsilon$  and the Schwinger effect (by  $E = \overline{E} + \mathcal{E}$ )

Intuitive explanation: analog of electromagnetism in matter

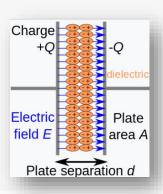
- Dielectric energy loss (= decay of a probe)  $\frac{dU_{loss}}{dt} = \mathcal{E} \frac{d\mathcal{D}}{dt} = \frac{1}{2}\omega \mathcal{E}^2 \operatorname{Im} \epsilon_{reg}$
- Microscopically, the decay of a probe is caused by the pair production

$$\Rightarrow \text{Energy for pair prod.} \frac{dU_{\text{pp}}}{dt} = \omega \frac{N(\mathcal{E}\neq 0) - N(\mathcal{E}=0)}{VT} \text{ must equal to } U_{\text{loss}}$$
$$\Rightarrow \frac{N(\mathcal{E}\neq 0) - N(\mathcal{E}=0)}{VT} = \frac{1}{2}\mathcal{E}^2 \text{ Im } \epsilon_{\text{reg}}$$

(4) LHS at  $\omega \rightarrow 0$  can be calculated with the Schwinger formula, so  $\Delta \epsilon$  can be fixed

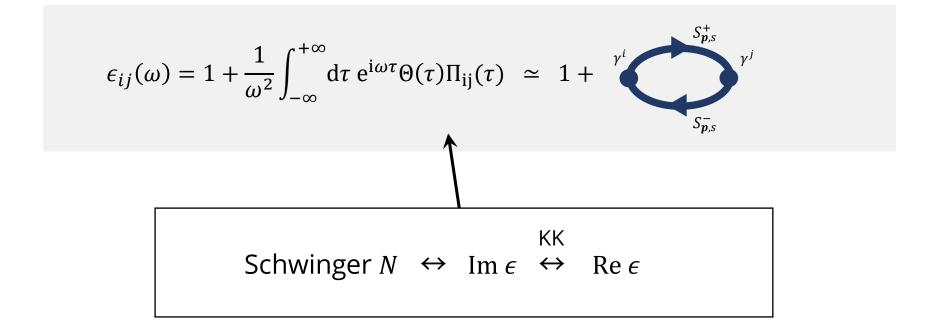
$$N_{\text{Schwinger}}(\overline{E} + \mathcal{E}) - N_{\text{Schwinger}}(\overline{E}) \propto \left( \exp\left[ -\pi \frac{m^2}{e(\overline{E} + \mathcal{E})} \right] - \exp\left[ -\pi \frac{m^2}{e\overline{E}} \right] \right) = (\dots) \times \exp\left[ -\pi \frac{m^2}{e\overline{E}} \right] \times \mathcal{E}^2$$

cf. see Landau-Lefshitz



## <u>Theory (5/5)</u>

### Linear response theory based on in-in formalism of QFT



# <u>This talk</u>

# Discuss the electric permittivity $\epsilon$ of the vacuum in a strong constant electric field

### I. Introduction

(1) The current understanding is limited to weak/slow regime

(2) As a signature of non-trivial QED vacuum structure in E field

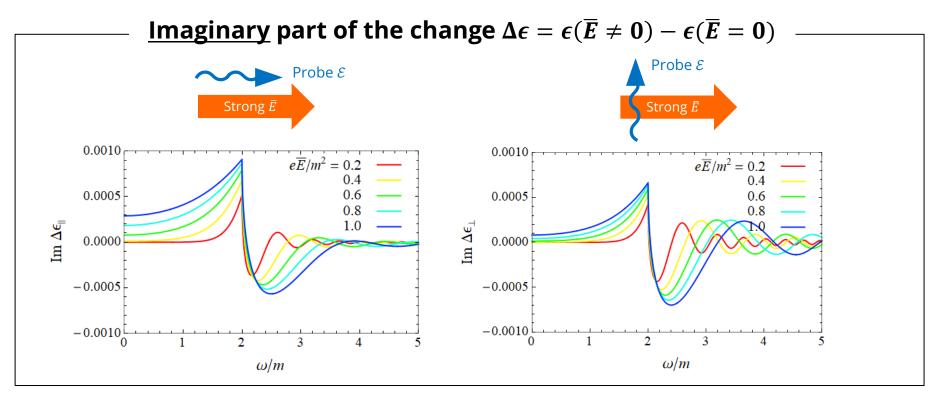
(3) Pursue analogy between strong-field QED and semicond. phys

**II. Theory** Linear response theory based on in-in formalism of QFT + Kramers-Kronig rel. + a "phenomenological" IR regularization

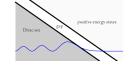
**III. Results** Will give positive statements to the motivations (1) - (3)

### **IV. Summary**

### <u>Results (1/4)</u>



Oscillation, as expected from the tilted vacuum

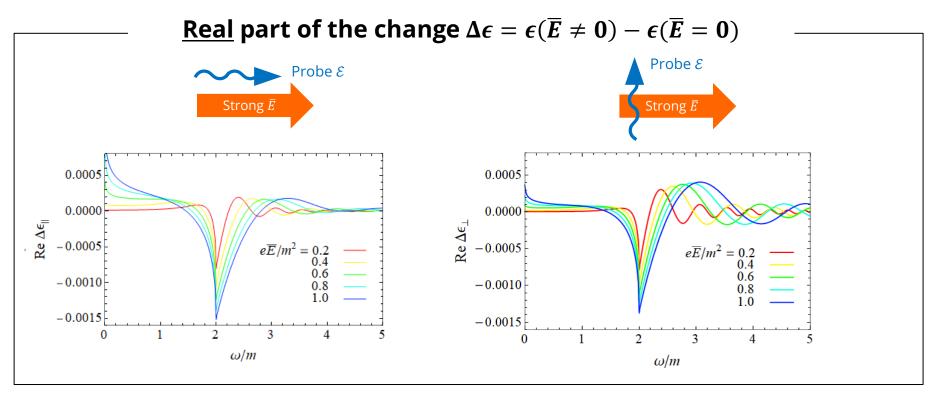


TEMR = - 191°C

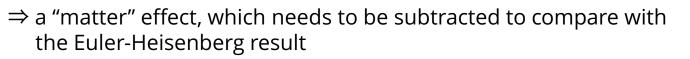
- Essentially the same as what have observed in semiconductor physics
- Birefringent (Im  $\Delta \epsilon_{\parallel} \neq \text{Im } \Delta \epsilon_{\perp}$ ) but basically the same
- Non-vanishing even at  $\omega \rightarrow 0$  due to the non-perturbative pair production (Schwinger)

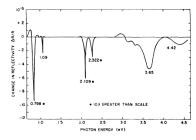
 $\therefore \operatorname{Im} \epsilon(\omega \to 0) \propto (N_{\operatorname{Schwinger}}(\overline{E} + \mathcal{E}) - N_{\operatorname{Schwinger}}(\overline{E})) \propto (\exp\left[-\pi \frac{m^2}{e(\overline{E} + \mathcal{E})}\right] - \exp\left[-\pi \frac{m^2}{e\overline{E}}\right]) = (\operatorname{finite}) \times \exp\left[-\pi \frac{m^2}{e\overline{E}}\right]$ 

### <u>Results (2/4)</u>

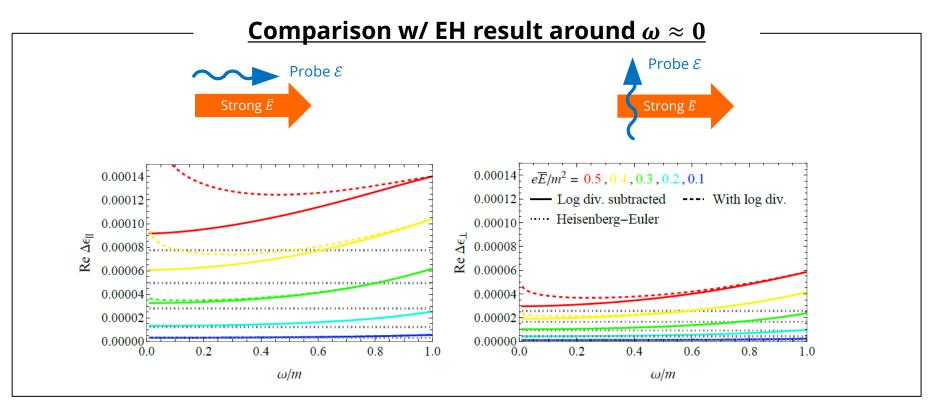


- Again oscillation, which is again consistent with semi-conductor
- Logarithmically divergent at  $\omega \rightarrow 0$  due to the non-pert. pair prod.
  - $\therefore \operatorname{Re} \epsilon(0) = \frac{1}{\pi} \operatorname{P.V.} \int_{-\infty}^{+\infty} \mathrm{d}\omega' \frac{1}{\omega'} \operatorname{Im} \epsilon(\omega') \sim \frac{1}{\pi} \int_{-\infty}^{+\infty} \mathrm{d}\omega' \frac{1}{\omega'} \operatorname{Im} \epsilon(0) \sim (\log \operatorname{div.}) \times \exp\left[-\pi \frac{m^2}{e\overline{E}}\right]$





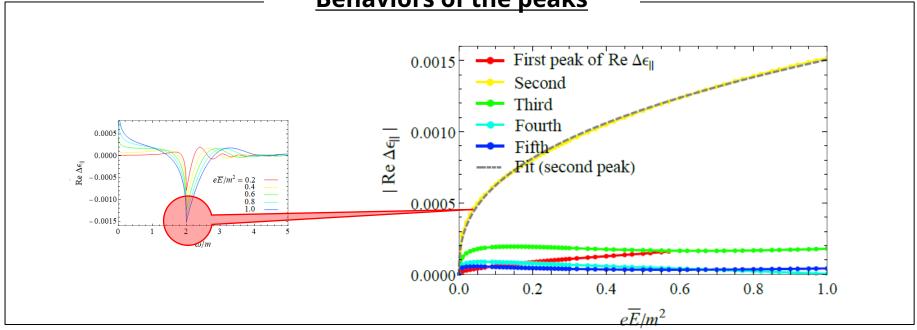
### <u>Results (3/4)</u>



- After the log subtraction, the result is consistent with the EH result  $\Delta \epsilon_{\rm EH} = \frac{\alpha}{45\pi} \left(\frac{e\bar{E}}{m^2}\right)^2 \times \begin{cases} 6 \ (II) \\ 2 \ (\bot) \end{cases}$
- The agreement becomes very good for weak fields  $e\bar{E}/m^2 \leq 0.2$  but EH underestimates about O(>10%) for strong fields

### <u>Results (4/4)</u>

#### **Behaviors of the peaks**



Numerical fit says (similar numbers for Im  $\epsilon_{\perp}$  and Re  $\epsilon_{\parallel,\perp}$ )

$$\operatorname{Re}\Delta\epsilon_{\parallel} \approx (-1.4 \times 10^{-4}) \times \left(\frac{I}{1 \times 10^{23} \text{ W/cm}^2}\right)^{0.19}$$
 where  $I = \overline{E}^2/2$  is the focused intensity

• much larger than EH e.g.,  $\Delta \epsilon_{\rm EH} = O(10^{-7})$  for  $I = O(1 \times 10^{23} \text{ W/cm}^2)$  (PW laser)

 $\Rightarrow$  High-frequency probe is useful to study  $\epsilon$  (or vacuum birefringence, in general)

• weak E dependence  $\Delta \epsilon \propto I^{\frac{1}{5} \sim \frac{1}{6}}_{-\frac{5}{6}} \Rightarrow$  the peaks of  $\Delta \epsilon$  can still be large for subcritical fields

e.g., only one-order smaller  $\Delta \epsilon = O(1 \times 10^{-5}) \gg \Delta \epsilon_{\rm EH}$  at GW scale

# <u>This talk</u>

# Discuss the electric permittivity $\epsilon$ of the vacuum in a strong constant electric field

### I. Introduction

(1) The current understanding is limited to weak/slow regime

- (2) As a signature of non-trivial QED vacuum structure in E field
- (3) Pursue analogy between strong-field QED and semicond. phys

**II. Theory** Linear response theory based on in-in formalism of QFT + Kramers-Kronig rel. + a "phenomenological" IR regularization

**III. Results** Will give positive statements to the motivations (1) - (3)

### **IV. Summary**

## <u>Summary</u>

# Discussed the electric permittivity $\epsilon$ of the vacuum in a strong constant electric field

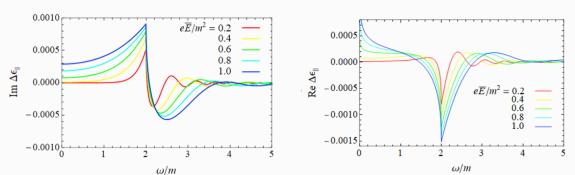
3 motivations and answers to them:

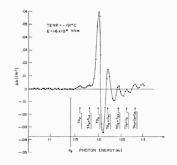
(1) The current understanding is limited to weak/slow regime

⇒ Succeeded in developing such a theory:
 Linear response theory based on in-in formalism of QFT
 + Kramers-Kronig rel. + a "phenomenological" IR regularization

(2) As a signature of non-trivial QED vacuum structure in E field

(3) Pursue analogy between strong-field QED and semicond. phys





### $\Rightarrow$ Yes: a characteristic oscillating structure in $\epsilon$ and is analogous to semicond.