Introduction to strong-field physics

Hidetoshi Taya

Research area: Theoretical physics (particle/nuclear theory)

Today's talk

Q: What happens if we make light (or "field" in general) stronger and stronger ?

Today's talk

Q: What happens if we make light (or "field" in general) stronger and stronger ?

⇒ Purpose of this talk: Review such physics of strong light

Contents

1. Overview of strong-field physics

- becoming a hot topic in physics, thanks to the recent developments in exp.
- the Schwinger effect = a process to create "something" from "nothing"

2. Application of the Schwinger effect ⇒ High-harmonic generation from the vacuum [**HT**, Hongo, Ikeda (2021)]

- first prediction of HHG from the vacuum
- a good example of "interdisciplinarity" of strong-field physics
	- ⇒ your expertise should be useful in my area and vice versa !

3. Summary

Contents

1. Overview of strong-field physics

- becoming a hot topic in physics, thanks to the recent developments in exp.
- the Schwinger effect = a process to create "something" from "nothing"

2. Application of the Schwinger effect HEL, Hongo, Ikeda (2021)] ⇒ High-harmonic generation from the vacuum

- first prediction of HHG from the vacuum
- a good example of "interdisciplinarity" of strong-field physics
	- ⇒ your expertise should be useful in my area and vice versa !

3. Summary

No field

No field Weak field Strong field

No field Weak field Strong field Only minor changes ⇒ Perturbative ⇒ Very well understood in both exp.& theor.

ex.) Electron (anomalous) magnetic moment $a \coloneqq \frac{g-2}{2}$ 2

≈ Electron energy shift in a weak magnetic field

 $a(\text{exp.})\quad = 1159652180.73\,... \times 10^{-12}\quad$ [Aoyama, Kinoshita, Nio (2017)] a (theor.) = 1159652182.03 ... × 10⁻¹²

If field becomes strong, physics becomes totally different & nontrivial

When is field "strong" ?

Strong-field condition:

To significantly modify the original system with typical energy Δ, the field must be more energetic than Δ

⇒ **Strong-field condition:** Δ < (energy scale of the field)

When is field "strong" ?

Strong-field condition:

To significantly modify the original system with typical energy Δ, the field must be more energetic than Δ

 \Rightarrow **Strong-field condition:** Δ < (energy scale of the field)

Estimate of the minimum field strength:

Standard Model The (matter) particle having the minimum energy

```
・ Charged ⇒ Couples to 
             electromagnetic (EM) field
```

```
• eE \text{ MeV}^2 > m_e^2 = (0.511 \text{ MeV})^2\approx O(10^{28} \,\text{W}/\text{cm}^2)
```
When is field "strong" ?

Strong-field condition:

To significantly modify the original system with typical energy Δ, the field must be more energetic than Δ

 \Rightarrow **Strong-field condition:** Δ < (energy scale of the field)

Estimate of the minimum field strength:

Recent availability of strong EM fields

The situation changing: becoming able to create/observe strong light

∴ NOW is the BEST time to study strong-field physics

Recent availability of strong EM fields

The situation changing: becoming able to create/observe strong light

High-power laser

Extreme physical systems

・ Heavy-ion collisions

RIC (2000~), LHC (2012~), FAIR/NICA/HIAF/J-Parc-HI/… (20XX~)

 $I \sim 10^{35} \,\mathrm{W/cm^2}$ $\left| \rule{0.3cm}{.0cm} \right|$ (eE, eB ~ $m_{\pi}^2 \sim (140 \text{ MeV})^2$)

・ Electron collider + Laser

Start soon: LUXE @ DESY, FACET-II @ SLAC

 $I \sim 10^{29} \,\mathrm{W/cm^2}$ $(eE, eB > m_e^2 \sim (1 \text{ MeV})^2)$

・ Magnetar

Suzaku (2005~2015), NICER (2017~) XL-Calibur (2018~), IXPE (2021~), …

 $I \sim 10^{29} \,\mathrm{W/cm^2}$ $(eE, eB > m_e^2 \sim (1 \text{ MeV})^2)$

∴ NOW is the BEST time to study strong-field physics

A bit more on heavy-ion collisions

Low-energy ($\sqrt{s_{NN}}$ = 2 – 10) HIC is interesting among other strong-field systems

• Sales point: The only system that has supercritical $F: = E^2 - B^2 > 0$, $G := E \cdot B \neq 0$

・ Numerical estimation of the EM profile in low-energy HIC

 $\omega \sqrt{s_{NN}}$ = 5.2 GeV

・ So, I'm interested in this and wanna study this further: ⇒ Chiral XXX? Axion electrodynamics? Novel QCD phase? Let's discuss if interested ©

Recent availability of strong EM fields

The situation changing: becoming able to create/observe strong light

High-power laser

Extreme physical systems

・ Heavy-ion collisions

RIC (2000~), LHC (2012~), FAIR/NICA/HIAF/J-Parc-HI/… (20XX~)

 $I \sim 10^{35} \,\mathrm{W/cm^2}$ $\left| \rule{0.3cm}{.0cm} \right|$ (eE, eB ~ $m_{\pi}^2 \sim (140 \text{ MeV})^2$)

・ Electron collider + Laser

Start soon: LUXE @ DESY, FACET-II @ SLAC

 $I \sim 10^{29} \,\mathrm{W/cm^2}$ $(eE, eB > m_e^2 \sim (1 \text{ MeV})^2)$

・ Magnetar

Suzaku (2005~2015), NICER (2017~) XL-Calibur (2018~), IXPE (2021~), …

 $I \sim 10^{29} \,\mathrm{W/cm^2}$ $(eE, eB > m_e^2 \sim (1 \text{ MeV})^2)$

∴ NOW is the BEST time to study strong-field physics

What can happen with strong EM field ?

\bm{W} hen $e\bm{E} > \bm{m}_{\bm{e}}^2$, many non-trivial phenomena have been predicted to occur

Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, Phys. Rept. (2023)]

Among others, the (Sauter-)Schwinger effect is the most intriguing

Sauter (1931), Schwinger (1951)

Particles are spontaneously produced from the vacuum (\approx "sthg" from "nothing")

What can happen with strong EM field ?

\bm{W} hen $e\bm{E} > \bm{m}_{\bm{e}}^2$, many non-trivial phenomena have been predicted to occur

Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, Phys. Rept. (2023)]

Among others, the (Sauter-)Schwinger effect is the most intriguing Sauter (1931), Schwinger (1951)

Particles are spontaneously produced from the vacuum (\approx "sthg" from "nothing")

Contents

1. Overview of strong-field physics

- becoming a hot topic in physics, thanks to the recent developments in exp.
- the Schwinger effect = a process to create "something" from "nothing"

2. Application of the Schwinger effect ⇒ High-harmonic generation from the vacuum [**HT**, Hongo, Ikeda (2021)]

- first prediction of HHG from the vacuum
- a good example of "interdisciplinarity" of strong-field physics
	- ⇒ your expertise should be useful in my area and vice versa !

3. Summary

Analogue of the Schwinger effect

Analogous particle production occurs in various physical systems

- ・ ex: Hawking radiation (strong gravity), dynamical Casimir effect (strong oscillation), (p)reheating in the early Universe (strong inflaton field), ...
- Landau-Zener effect in materials would be the most prominent Landau (1932), Zener (1932)

Analogue of the Schwinger effect

Analogous particle production occurs in various physical systems

- ・ ex: Hawking radiation (strong gravity), dynamical Casimir effect (strong oscillation), (p)reheating in the early Universe (strong inflaton field), ...
- Landau (1932), Zener (1932) **Landau-Zener effect** in materials would be the most prominent

 \triangledown The responses of the vacuum and ground state by an external EM field should be similar

Analogue of the Schwinger effect

Analogous particle production occurs in various physical systems

- ・ ex: Hawking radiation (strong gravity), dynamical Casimir effect (strong oscillation), (p)reheating in the early Universe (strong inflaton field), ...
- Landau-Zener effect in materials would be the most prominent Landau (1932), Zener (1932)

 \vee The responses of the vacuum and ground state by an external EM field should be similar

Indeed, the particle prediction rate and the excitation rate obey the same exponential formula

 $\Gamma_{\text{Schwinger}} = \#\exp[\# m^2 /_{eE}]$ $\Gamma_{\text{Landau-Zener}} = \#\exp[\# \Delta^2 /_{eE}]$

 \checkmark Schwinger effect has not been verified yet

BUT, Landau-Zener transition has been observed and utilized, e.g., to design devices

⇒ Importing ideas from other areas of physics is quite to better understand the Schwinger effect (or strong-field physics in general)

As such idea: High-harmonic generation from the vacuum

・ **HHG developed in optics & solid-state physics**

- Observed with various materials: gas (1988), liquid (2014), solid (2011), ...
- Many applications: laser pointer, high-speed switching, ...
- Nobel prize in 2023

As such idea: High-harmonic generation from the vacuum

・ **HHG developed in optics & solid-state physics**

- Observed with various materials: gas (1988), liquid (2014), solid (2011), ...
- Many applications: laser pointer, high-speed switching, ...
- Nobel prize in 2023
- **Microscopic mechanism: Landau-Zener is the key**
	- Theory for band materials developed recently [Vampa et al. (2014)] (cf. 3 step model for gas is insufficient for band materials) $_{[Corkum (1993)]}$ [Lewenstein et al. (1994)]
	- But still incomplete and remains a hot topic, e.g., lack of analytical formulation

As such idea: High-harmonic generation from the vacuum

・ **HHG developed in optics & solid-state physics**

- Observed with various materials: gas (1988), liquid (2014), solid (2011), ...
- Many applications: laser pointer, high-speed switching, ...
- Nobel prize in 2023
- **Microscopic mechanism: Landau-Zener is the key**
	- Theory for band materials developed recently [Vampa et al. (2014)] (cf. 3 step model for gas is insufficient for band materials) $_{[Corkum (1993)]}$ [Lewenstein et al. (1994)]
	- But still incomplete and remains a hot topic, e.g., lack of analytical formulation

Analogy b/w Schwinger & Landau-Zener ⇒ natural to expect HHG from the vacuum

Observable: Photon spectrum ⇒ solving of a differential equation

Observable: Photon spectrum ⇒ solving of a differential equation

Maxwell eq. \Rightarrow Photon spectrum is determined by current

$$
J^{\nu} = \partial_{\mu} F^{\mu \nu} \sim \partial^2 A^{\nu} \Rightarrow \omega \frac{dN_{photon}}{d\omega} = |\omega \times F. T. [J]|^2
$$

Observable: Photon spectrum ⇒ solving of a differential equation

Maxwell eq. \Rightarrow Photon spectrum is determined by current

$$
\int V = \partial_{\mu} F^{\mu\nu} \sim \partial^2 A^{\nu} \Rightarrow \omega \frac{dN_{photon}}{d\omega} = |\omega \times F. T. [j]|^2
$$

current produced by the Schwinger effect:

$$
J = \langle \hat{J} \rangle = \left\langle \hat{\bar{\psi}} \gamma^{\mu} \hat{\psi} \right\rangle
$$

Observable: Photon spectrum ⇒ solving of a differential equation

Maxwell eq. \Rightarrow Photon spectrum is determined by current

$$
\int V = \partial_{\mu} F^{\mu\nu} \sim \partial^2 A^{\nu} \implies \omega \frac{dN_{photon}}{d\omega} = |\omega \times F. T. [j]|^2
$$

current produced by the Schwinger effect:

$$
J = \langle \hat{J} \rangle = \left\langle \hat{\bar{\psi}} \gamma^{\mu} \hat{\psi} \right\rangle
$$

determined by the Schrodinger eq. (the Dirac eq.) under the strong field

$$
i\hbar \partial_t \hat{\psi} = H\hat{\psi} = \left(H_{\text{free}} + V_{\text{strong field}}\right)\hat{\psi}
$$
 (4)

Observable: Photon spectrum ⇒ solving of a differential equation

Maxwell eq. \Rightarrow Photon spectrum is determined by current

$$
\underbrace{\int \nu}{\int} = \partial_{\mu} F^{\mu \nu} \sim \partial^2 A^{\nu} \Rightarrow \omega \frac{dN_{photon}}{d\omega} = |\omega \times F. T. [J]|^2
$$

current produced by the Schwinger effect:

$$
J = \langle \hat{J} \rangle = \left\langle \hat{\bar{\psi}} \gamma^{\mu} \hat{\psi} \right\rangle
$$

determined by the Schrodinger eq. (the Dirac eq.) under the strong field

$$
i\hbar \partial_t \hat{\psi} = H\hat{\psi} = (H_{\text{free}} + V_{\text{strong field}})\hat{\psi}
$$
 (4)

∴ We can take two strategies to discuss vacuum HHG:

(1) Numerically solve Eq. (4) (sometimes called TDSE method)

(2) Analytically solve Eq. () by using some "wise" mathematical method

⇒ In this work: Exact WKB method

Exact WKB method

Exact WKB = a wise method to solve ODE with a small parameter

[Voros (1983)] [Pham, Dillinger, Delabaere,

= "usual" WKB + Borel resum.

Aoki, Koike, Takei, ...]

[Jeffery (1924)] [Wentzel (1926)] [Kramers (1926)] [Brillouin (1926)]

[Ecalle (1981)]

Exact WKB method

- WKB expansion makes sense if the perturbative part is convergent
- However, $\psi_{+,n} \sim n!$ in general (e.g., Airy function $Q(t) \propto t$)

⇒ WKB expansion has zero radius of convergence ⇒ ill-defined !!!

Exact WKB method

Exact WKB = a wise method to solve ODE with a small parameter

[Voros (1983)] [Pham, Dillinger, Delabaere, Aoki, Koike, Takei, ...] Aoki, Koike, Takei, ...]

= "usual" WKB + Borel resum.

 \dot{n}

 \hbar

 $^{\infty}$ dn

 $\psi_{\pm,n}(t)$

[Ecalle (1981)]

 $n!$

[Kramers (1926)] [Brillouin (1926)]

A resummation scheme for factorially divergent ~n! series

• Consider the div. part of WKB expansion $\psi_{\pm}(t; \hbar) \coloneqq \sum_{n=0}^{\infty} \psi_{\pm,n}(t) \hbar^n$ ∞

 $B[\psi_{\pm}](t; \eta) \coloneqq \sum_{\pm}$ $\textcircled{1}$ Construct "Borel transformation": $B[\psi_{+}](t;\eta) \coloneqq \sum_{n=1}^{\infty} \frac{\psi_{+}^n(\psi_{-})}{n!} \eta^n$

 $\Psi_{\pm}(t; \hbar) \coloneqq$ ② Laplace trans. gives "Borel sum": $\Psi_{\pm}(t; \hbar) \coloneqq \int \frac{d\eta}{\hbar} e^{-\eta/\hbar} B[\psi_{\pm}](t; \eta)$

- 0 ⇒ Ψ ₊ gives a well-defined version of the WKB solution ! \cdot Ψ_{+} is well-defined and is a natural analytic continuation of ψ_{+}
- Note 1: If $B[\psi_\pm]$ has singularities on the real axis, Ψ_\pm is ill-defined \Rightarrow but, the "ill-defined-ness" can be used to quantify the Stokes phenomenon of the WKB solution

 Note 2: in practice, some approximations need to be used in Borel resum \Rightarrow in this work: only leading-order n! div. is considered (Airy approx.)

Result (1/2)

<u>Setup</u>: A monochromatic E-field $E(t) = E_0 \cos(\Omega t)$ applied onto QED vacuum

Result (1/2): Numerical

<u>Setup</u>: A monochromatic E-field $E(t) = E_0 \cos(\Omega t)$ applied onto QED vacuum

Result (1/2): Numerical

<u>Setup</u>: A monochromatic E-field $E(t) = E_0 \cos(\Omega t)$ applied onto QED vacuum

- ・ High harmonics appears from the vacuum when field becomes strong !
	- structure similar to solid HHG (e.g., plateau, cutoff)

Result (2/2): Analytical

<u>Setup</u>: A monochromatic E-field $E(t) = E_0 \cos(\Omega t)$ applied onto QED vacuum

- structure similar to solid HHG (e.g., plateau, cutoff) ・ High harmonics appears from the vacuum when field becomes strong !
- ・ Analytical WKB calculation is good at the plateau but bad after the cutoff
	- \Rightarrow useful to get a deeper insight of HHG in the agreement region

⇒ current can be decomposed into intra- and inter-band contributions

$$
J \sim \bar{\psi}\gamma\psi \sim \#\bar{\psi}_{\pm}\psi_{\pm} + \#\bar{\psi}_{\pm}\psi_{\mp} \sim \#\mathrm{e}^{i\int (\epsilon - \epsilon)dt} + \#\mathrm{e}^{i\int (\epsilon + \epsilon)dt} \sim \# + \#\mathrm{e}^{2i\int \epsilon dt}
$$

⇒ the intra-band interference has higher frequency ⇒ source of HHG - is different from the naïve 3 step model in gas HHG, but is consistent w/ solid HHG [Vampa et al. (2014)]

・ Total wavefunction = superposition of the two energy states: $\psi = \psi_{+} + \psi_{-} = \#\mathrm{e}^{-i\int \epsilon \, dt} + \#\mathrm{e}^{+i\int \epsilon \, dt}$ w/ $\epsilon \sim \sqrt{m^2 + p^2} \sim \sqrt{m^2 + (e\mathring{A}(t))^2}$ eE_0 $\frac{L_0}{\Omega}$ cos(Ωt)

⇒ current can be decomposed into intra- and inter-band contributions

$$
J \sim \bar{\psi}\gamma\psi \sim \#\bar{\psi}_{\pm}\psi_{\pm} + \#\bar{\psi}_{\pm}\psi_{\mp} \sim \#\mathrm{e}^{i\int (\epsilon - \epsilon)dt} + \#\mathrm{e}^{i\int (\epsilon + \epsilon)dt} \sim \#\mathrm{e}^{i\int \epsilon dt}
$$

⇒ the intra-band interference has higher frequency ⇒ source of HHG - is different from the naïve 3 step model in gas HHG, but is consistent w/ solid HHG [Vampa et al. (2014)]

・ Total wavefunction = superposition of the two energy states: eE_0 $\frac{L_0}{\Omega}$ cos(Ωt)

$$
\psi = \psi_{+} + \psi_{-} = \# e^{-i \int \epsilon \, dt} + \# e^{+i \int \epsilon \, dt} \quad \text{w/} \quad \epsilon \sim \sqrt{m^2 + p^2} \sim \sqrt{m^2 + (eA(t))^2}
$$

⇒ current can be decomposed into intra- and inter-band contributions

$$
J \sim \bar{\psi}\gamma\psi \sim \#\bar{\psi}_{\pm}\psi_{\pm} + \#\bar{\psi}_{\pm}\psi_{\mp} \sim \#\mathrm{e}^{i\int (\epsilon - \epsilon)dt} + \#\mathrm{e}^{i\int (\epsilon + \epsilon)dt} \sim \#\mathrm{e}^{i\int \epsilon dt}
$$

⇒ the intra-band interference has higher frequency ⇒ source of HHG • Cutoff law: F. T. $[J_{inter}] \sim \int dt$ exp $[-i \int dt (\omega - 2\epsilon)] \Rightarrow \omega_{\text{cutoff}} \sim \max_{t} 2\epsilon(t) \sim 2eE_0/\Omega$ - is different from the naïve 3 step model in gas HHG, but is consistent w/ solid HHG [Vampa et al. (2014)]

- $\omega_{\rm cutoff} \propto E_0$ is consistent w/ solid HHG, while $\omega_{\rm cutoff} \propto \Omega^{-1}$ is our prediction

[Ghimire et al., (2011)]

Contents

1. Overview of strong-field physics

- becoming a hot topic in physics, thanks to the recent developments in exp.
- the Schwinger effect = a process to create "something" from "nothing"

2. Application of the Schwinger effect HEL, Hongo, Ikeda (2021)] ⇒ High-harmonic generation from the vacuum

- first prediction of HHG from the vacuum
- a good example of "interdisciplinarity" of strong-field physics
	- ⇒ your expertise should be useful in my area and vice versa !

3. Summary

Summary

Q: What happens if we make light (or "field" in general) stronger and stronger ?

A: Our vacuum shall be destroyed and gives us nontrivial responses

- ・ Why interesting: Unexplored nonpert. regime ⇒ many nontrivial phenomena we've never seen
- ・ Why timely: Recent availability of strong fields e.g., high-power laser, magnetar, heavy-ion colls

Example phenomenon: HHG from the vacuum

- ・ First prediction of HHG from the vauum
- ・ An example of "interdisciplinarity" strong-field physics
	- \Leftarrow borrowed ideas from **optics, solid-state physics, & math COV COVID-10 HT**, Hongo, Ikeda (2021)]

Exact-WKB recipe for Stokes phenomenon

Step 2: Compute Borel sum Ψ_+ **at each Stokes region**

・ Borel sum is well-defined and computable in each region separated by Stokes lines

$$
\Psi_{\pm} = \int_0^{\infty} \frac{d\eta}{\hbar} e^{-\eta/\hbar} B[\psi_{\pm}](t;\eta) \sim \exp\left[\mp\frac{i}{\hbar} \int_{t_0}^t dt' \sqrt{Q(t')}\right] \times (1+O(\hbar)) \text{ at each Stokes region}
$$

Step 3: Compute the Stokes constants α and β

・ Whenever crosses Stokes lines, Ψ[±] jumps discontinuously (**Stokes phenomenon**) \Rightarrow The discontinuity is given by the integral of singularities of $B[\psi_+]$ $d\eta$

 $\Psi_{+}(\text{region } A) = \alpha \Psi_{+}(\text{region } B) + \beta \Psi_{-}(\text{region } B)$

Application to high-harmonic generation (2/2)

- \cdot WKB works more in the deep non-perturbative regime ${E}_0 \rightarrow \text{large}, \Omega \rightarrow \text{small}$
- \cdot Demonstration: magnitude of the harmonic peak at $\omega/\Omega = 9$

・ **Lessons:**

(1) WKB makes it easier to analyze the non-perturbative regime

- (2) Saturation & oscillation of the harmonic intensity
	- \Rightarrow consistent with recent semi-conductor exp. [Xia et al., (2020)] (but only E_0 -dep. is measured and Ω -dep. is our prediction)

Peripheral case

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

Non-central collision ⇒ B & E・B are produced

- $eE \cdot eB = O((50 \text{ MeV})^4)$ \Rightarrow Non-negligible for QCD (Enough strong for electron and current quarks)
- ・ Perhaps, a nice place to study chiral-anomaly-related stuffs

ex) chirality production via the Schwinger mechanism $N_5 = VT$ $eE\cdot eB$ $\frac{1}{2\pi^2}$ exp $-\pi$ $m²$ eE