Introduction to strong-field physics

Hidetoshi Taya

Research area: Theoretical physics (particle/nuclear theory)

Today's talk

Q: What happens if we make light (or "field" in general) stronger and stronger?

Today's talk

Q: What happens if we make light (or "field" in general) stronger and stronger?

(≈ "something" even from "nothing")

⇒ Purpose of this talk: Review such physics of strong light

Contents

1. Overview of strong-field physics

- becoming a hot topic in physics, thanks to the recent developments in exp.
- the Schwinger effect = a process to create "something" from "nothing"

2. Application of the Schwinger effect HT, Hongo, Ikeda (2021) \Rightarrow High-harmonic generation from the vacuum

- first prediction of HHG from the vacuum
- a good example of "interdisciplinarity" of strong-field physics
 - ⇒ your expertise should be useful in my area and vice versa !

3. Summary

Contents

1. Overview of strong-field physics

- becoming a hot topic in physics, thanks to the recent developments in exp.
- the Schwinger effect = a process to create "something" from "nothing"

2. Application of the Schwinger effect Int. Hongo, Ikeda (2021) → High-harmonic generation from the vacuum

- first prediction of HHG from the vacuum
- a good example of "interdisciplinarity" of strong-field physics
 - ⇒ your expertise should be useful in my area and vice versa !

3. Summary

No field

No field

Weak field

Strong field

No field

ol.			
eld	Weak field	Strong field	
	Only minor changes		
	\Rightarrow Perturbative		
	\Rightarrow Very well understood		

in both exp.& theor.

ex.) Electron (anomalous) magnetic moment $a \coloneqq \frac{g-2}{2}$

≈ Electron energy shift in a weak magnetic field \overline{d}

 $a(\text{theor.}) = 1159652182.03 \dots \times 10^{-12}$ $a(\text{exp.}) = 1159652180.73 \dots \times 10^{-12}$ [Aoyama, Kinoshita, Nio (2017)]

If field becomes strong, physics becomes totally different & nontrivial

When is field "strong"?

Strong-field condition:

To significantly modify the original system with typical energy Δ , the field must be more energetic than Δ

 \Rightarrow Strong-field condition: $\Delta < (energy scale of the field)$

<u>When is field "strong"</u>

Strong-field condition:

To significantly modify the original system with typical energy Δ , the field must be more energetic than Δ

 \Rightarrow Strong-field condition: $\Delta < (energy scale of the field)$

Estimate of the minimum field strength:

Standard Model

e

The (matter) particle having the minimum energy

```
• Charged \Rightarrow Couples to
             electromagnetic (EM) field
```

```
• eE \text{ MeV}^2 > m_e^2 = (0.511 \text{ MeV})^2
                         \approx O(10^{28} \,\mathrm{W/cm^2})
```

When is field "strong"?

Strong-field condition:

To significantly modify the original system with typical energy Δ , the field must be more energetic than Δ

 \Rightarrow Strong-field condition: $\Delta < (energy scale of the field)$

Estimate of the minimum field strength:

Recent availability of strong EM fields

The situation changing: becoming able to create/observe strong light

 \therefore NOW is the BEST time to study strong-field physics

Recent availability of strong EM fields

The situation changing: becoming able to create/observe strong light

High-power laser

Extreme physical systems

Heavy-ion collisions

RIC (2000~), LHC (2012~), FAIR/NICA/HIAF/J-Parc-HI/... (20XX~)

 $I \sim 10^{35} \text{ W/cm}^2$ (*eE*, *eB* ~ m_{π}^2 ~ (140 MeV)²)

• Electron collider + Laser

Start soon: LUXE @ DESY, FACET-II @ SLAC

 $I \sim 10^{29} \,\text{W/cm}^2$ (*eE*, *eB* > $m_e^2 \sim (1 \,\text{MeV})^2$)

aset magnet e Compton photon e e pair e beam dump

• Magnetar

Suzaku (2005~2015), NICER (2017~) XL-Calibur (2018~), IXPE (2021~), ...

 $I \sim 10^{29} \text{ W/cm}^2$ (*eE*, *eB* > $m_e^2 \sim (1 \text{ MeV})^2$)

... NOW is the BEST time to study strong-field physics

A bit more on heavy-ion collisions

Low-energy ($\sqrt{s_{NN}} = 2 - 10$) HIC is interesting among other strong-field systems

• Sales point: The only system that has supercritical $F := E^2 - B^2 > 0$, $G := E \cdot B \neq 0$

	high-power laser	magnetar	High-energy HIC	Low-energy HIC
Field profile	(usually) $F=G=0$	F < 0, G = 0	F < 0, G = 0	$F > 0, G \neq 0$
strength	subcritical	supercritical	far-supercritical	supercritical
lifetime	super-long	super-long	super-short	long

• Numerical estimation of the EM profile in low-energy HIC

• So, I'm interested in this and wanna study this further:

 \Rightarrow Chiral XXX ? Axion electrodynamics? Novel QCD phase? Let's discuss if interested

Recent availability of strong EM fields

The situation changing: becoming able to create/observe strong light

High-power laser

Extreme physical systems

Heavy-ion collisions

RIC (2000~), LHC (2012~), FAIR/NICA/HIAF/J-Parc-HI/... (20XX~)

 $I \sim 10^{35} \text{ W/cm}^2$ (*eE*, *eB* ~ m_{π}^2 ~ (140 MeV)²)

• Electron collider + Laser

Start soon: LUXE @ DESY, FACET-II @ SLAC

 $I \sim 10^{29} \,\text{W/cm}^2$ (*eE*, *eB* > $m_e^2 \sim (1 \,\text{MeV})^2$)

aset magnet e Compton photon e e pair e beam dump

• Magnetar

Suzaku (2005~2015), NICER (2017~) XL-Calibur (2018~), IXPE (2021~), ...

 $I \sim 10^{29} \text{ W/cm}^2$ (*eE*, *eB* > $m_e^2 \sim (1 \text{ MeV})^2$)

... NOW is the BEST time to study strong-field physics

What can happen with strong EM field?

<u>When $eE > m_e^2$, many non-trivial phenomena have been predicted to occur</u>

Review: [Fedotov, Ilderton, Karbstein, King, Seipt, <u>HT</u>, Torgrimsson, Phys. Rept. (2023)]

<u>Among others, the (Sauter-)Schwinger effect is the most intriguing</u>

Sauter (1931), Schwinger (1951)

Particles are spontaneously produced from the vacuum (≈ "sthg" from "nothing")

What can happen with strong EM field?

<u>When $eE > m_e^2$, many non-trivial phenomena have been predicted to occur</u>

Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, Phys. Rept. (2023)]

Among others, the (Sauter-)Schwinger effect is the most intriguing

Particles are spontaneously produced from the vacuum (≈ "sthg" from "nothing")

Contents

1. Overview of strong-field physics

- becoming a hot topic in physics, thanks to the recent developments in exp.
- the Schwinger effect = a process to create "something" from "nothing"

2. Application of the Schwinger effect [HT, Hongo, Ikeda (2021)] \Rightarrow High-harmonic generation from the vacuum

- first prediction of HHG from the vacuum
- a good example of "interdisciplinarity" of strong-field physics
 - ⇒ your expertise should be useful in my area and vice versa !

3. Summary

Analogue of the Schwinger effect

Analogous particle production occurs in various physical systems

- ex: Hawking radiation (strong gravity), dynamical Casimir effect (strong oscillation), (p)reheating in the early Universe (strong inflaton field), ...
- Landau-Zener effect in materials would be the most prominent Landau (1932), Zener (1932)

Analogue of the Schwinger effect

Analogous particle production occurs in various physical systems

- ex: Hawking radiation (strong gravity), dynamical Casimir effect (strong oscillation), (p)reheating in the early Universe (strong inflaton field), ...
- Landau-Zener effect in materials would be the most prominent Landau (1932), Zener (1932)

✓ The responses of the vacuum and ground state by an external EM field should be similar

Analogue of the Schwinger effect

Analogous particle production occurs in various physical systems

- ex: Hawking radiation (strong gravity), dynamical Casimir effect (strong oscillation), (p)reheating in the early Universe (strong inflaton field), ...
- Landau-Zener effect in materials would be the most prominent Landau (1932), Zener (1932)

✓ The responses of the vacuum and ground state by an external EM field should be similar

✓ Indeed, the particle prediction rate and the excitation rate obey the same exponential formula

 $\Gamma_{\text{Schwinger}} = \# \exp[\# \frac{m^2}{eE}]$ $\Gamma_{\text{Landau-Zener}} = \# \exp[\# \frac{\Delta^2}{eE}]$

✓ Schwinger effect has not been verified yet

BUT, Landau-Zener transition has been observed and utilized, e.g., to design devices

⇒ Importing ideas from other areas of physics is quite to better understand the Schwinger effect (or strong-field physics in general)

As such idea: High-harmonic generation from the vacuum

HHG developed in optics & solid-state physics

- Observed with various materials: gas (1988), liquid (2014), solid (2011), ...
- Many applications: laser pointer, high-speed switching, ...
- Nobel prize in 2023

٠

As such idea: High-harmonic generation from the vacuum

HHG developed in optics & solid-state physics

- Observed with various materials: gas (1988), liquid (2014), solid (2011), ...
- Many applications: laser pointer, high-speed switching, ...
- Nobel prize in 2023

٠

- Microscopic mechanism: Landau-Zener is the key
 - Theory for band materials developed recently [Vampa et al. (2014)] (cf. 3 step model for gas is insufficient for band materials) [Corkum (1993)] [Lewenstein et al. (1994)]
 - But still incomplete and remains a hot topic, e.g., lack of analytical formulation

As such idea: High-harmonic generation from the vacuum

HHG developed in optics & solid-state physics

- Observed with various materials: gas (1988), liquid (2014), solid (2011), ...
- Many applications: laser pointer, high-speed switching, ...
- Nobel prize in 2023

٠

- Microscopic mechanism: Landau-Zener is the key
 - Theory for band materials developed recently [Vampa et al. (2014)] (cf. 3 step model for gas is insufficient for band materials) [Corkum (1993)] [Lewenstein et al. (1994)]
 - But still incomplete and remains a hot topic, e.g., lack of analytical formulation

Analogy b/w Schwinger & Landau-Zener ⇒ natural to expect HHG from the vacuum

Observable: Photon spectrum \Rightarrow solving of a differential equation

Observable: Photon spectrum \Rightarrow solving of a differential equation

Maxwell eq. \Rightarrow Photon spectrum is determined by current

$$J^{\nu} = \partial_{\mu} F^{\mu\nu} \sim \partial^2 A^{\nu} \Rightarrow \omega \frac{\mathrm{d}N_{\mathrm{photon}}}{\mathrm{d}\omega} = |\omega \times \mathrm{F.T.}[J]|^2$$

Observable: Photon spectrum \Rightarrow solving of a differential equation

Maxwell eq. \Rightarrow Photon spectrum is determined by current

$$\int^{\nu} = \partial_{\mu} F^{\mu\nu} \sim \partial^{2} A^{\nu} \Rightarrow \omega \frac{\mathrm{d}N_{\mathrm{photon}}}{\mathrm{d}\omega} = |\omega \times \mathrm{F.\,T.\,}[J]|^{2}$$

current produced by the Schwinger effect:

$$J = \langle \hat{J} \rangle = \left\langle \hat{\bar{\psi}} \gamma^{\mu} \hat{\psi} \right\rangle$$

Observable: Photon spectrum \Rightarrow solving of a differential equation

Maxwell eq. \Rightarrow Photon spectrum is determined by current

$$\int^{\nu} = \partial_{\mu} F^{\mu\nu} \sim \partial^{2} A^{\nu} \Rightarrow \omega \frac{\mathrm{d}N_{\mathrm{photon}}}{\mathrm{d}\omega} = |\omega \times \mathrm{F.\,T.\,}[J]|^{2}$$

current produced by the Schwinger effect:

$$J = \langle \hat{f} \rangle = \left(\widehat{\bar{\psi}} \gamma^{\mu} \widehat{\psi} \right)$$

determined by the Schrodinger eq. (the Dirac eq.) under the strong field

$$i\hbar\partial_t\hat{\psi} = H\hat{\psi} = (H_{\text{free}} + V_{\text{strong field}})\hat{\psi}$$
 (•)

Observable: Photon spectrum \Rightarrow solving of a differential equation

Maxwell eq. \Rightarrow Photon spectrum is determined by current

$$\int^{\nu} = \partial_{\mu} F^{\mu\nu} \sim \partial^{2} A^{\nu} \Rightarrow \omega \frac{\mathrm{d}N_{\mathrm{photon}}}{\mathrm{d}\omega} = |\omega \times \mathrm{F.\,T.\,}[J]|^{2}$$

current produced by the Schwinger effect:

$$J = \langle \hat{J} \rangle = \left\langle \hat{\bar{\psi}} \gamma^{\mu} \hat{\psi} \right\rangle$$

determined by the Schrodinger eq. (the Dirac eq.) <u>under the strong field</u>

$$i\hbar\partial_t\hat{\psi} = H\hat{\psi} = (H_{\text{free}} + V_{\text{strong field}})\hat{\psi}$$
 (•)

... We can take two strategies to discuss vacuum HHG:

(1) Numerically solve Eq. () (sometimes called TDSE method)

(2) Analytically solve Eq. () by using some "wise" mathematical method

⇒ In this work: Exact WKB method

Exact WKB method

Exact WKB = a wise method to solve ODE with a small parameter

[Voros (1983)] [Pham, Dillinger, Delabaere, Aoki, Koike, Takei, ...]

= "usual" WKB + Borel resum.

[Jeffery (1924)] [Wentzel (1926)] [Kramers (1926)] [Brillouin (1926)] [Ecalle (1981)]

[HT, Fujimori, Misumi, Nitta, Sakai (2021)]

Exact WKB method

• However, $\psi_{\pm,n} \sim n!$ in general (e.g., Airy function $Q(t) \propto t$)

 \Rightarrow WKB expansion has zero radius of convergence \Rightarrow ill-defined !!!

Exact WKB method

Exact WKB = a wise method to solve ODE with a small parameter

[Voros (1983)] [Pham, Dillinger, Delabaere, Aoki, Koike, Takei, ...]

= "usual" WKB + Borel resum.

[Jeffery (1924)] [Wentzel (1926)] [Kramers (1926)] [Brillouin (1926)]

A resummation scheme for factorially divergent ~n! series

• Consider the div. part of WKB expansion $\psi_{\pm}(t;\hbar) \coloneqq \sum_{n=0}^{\infty} \psi_{\pm,n}(t)\hbar^n$

① Construct "Borel transformation": $B[\psi_{\pm}](t;\eta) \coloneqq \sum_{n=1}^{\infty} \frac{\psi_{\pm,n}(t)}{n!} \eta^{n}$

(2) Laplace trans. gives "Borel sum": $\Psi_{\pm}(t;\hbar) \coloneqq \int_{0}^{\infty} \frac{d\eta}{\hbar} e^{-\eta/\hbar} B[\psi_{\pm}](t;\eta)$

- Ψ_{\pm} is well-defined and is a natural analytic continuation of ψ_{\pm} $\Rightarrow \Psi_{+}$ gives a well-defined version of the WKB solution !
- Note 1: If $B[\psi_{\pm}]$ has singularities on the real axis, Ψ_{\pm} is ill-defined \Rightarrow but, the "ill-defined-ness" can be used to quantify the Stokes phenomenon of the WKB solution

Note 2: in practice, some approximations need to be used in Borel resum \Rightarrow in this work: only leading-order n! div. is considered (Airy approx.)

[Ecalle (1981)]

<u>Result (1/2)</u>

<u>Setup</u>: A monochromatic E-field $E(t) = E_0 \cos(\Omega t)$ applied onto QED vacuum

What I did: Compute harmonic spectrum numerically and analytically with WKB

Result (1/2): Numerical

<u>Setup</u>: A monochromatic E-field $E(t) = E_0 \cos(\Omega t)$ applied onto QED vacuum

What I did: Compute harmonic spectrum numerically and analytically with WKB

Result (1/2): Numerical

<u>Setup</u>: A monochromatic E-field $E(t) = E_0 \cos(\Omega t)$ applied onto QED vacuum

What I did: Compute harmonic spectrum numerically and analytically with WKB

High harmonics appears from the vacuum when field becomes strong !
 structure similar to solid HHG (e.g., plateau, cutoff)

Result (2/2): Analytical

<u>Setup</u>: A monochromatic E-field $E(t) = E_0 \cos(\Omega t)$ applied onto QED vacuum <u>What I did</u>: Compute harmonic spectrum **numerically** and **analytically with WKB**

- High harmonics appears from the vacuum when field becomes strong !
 structure similar to solid HHG (e.g., plateau, cutoff)
- Analytical WKB calculation is good at the plateau but bad after the cutoff
 - \Rightarrow useful to get a deeper insight of HHG in the agreement region e.g., determination of the cutoff location (\rightarrow next slide)

⇒ current can be decomposed into intra- and inter-band contributions

$$J \sim \bar{\psi}\gamma\psi \sim \# \bar{\psi}_{\pm}\psi_{\pm} + \# \bar{\psi}_{\pm}\psi_{\mp} \sim \# e^{i\int (\epsilon-\epsilon)dt} + \# e^{i\int (\epsilon+\epsilon)dt} \sim \# + \# e^{2i\int \epsilon dt}$$

⇒ the intra-band interference has higher frequency ⇒ source of HHG
 - is different from the naïve 3 step model in gas HHG, but is consistent w/ solid HHG

• Total wavefunction = superposition of the two energy states: $\frac{eE_0}{\Omega} \cos(\Omega t)$ $\psi = \psi_+ + \psi_- = \# e^{-i\int \epsilon \, dt} + \# e^{+i\int \epsilon \, dt} \quad \text{w/} \quad \epsilon \sim \sqrt{m^2 + p^2} \sim \sqrt{m^2 + (eA(t))^2}$

⇒ current can be decomposed into intra- and inter-band contributions

$$J \sim \bar{\psi}\gamma\psi \sim \# \,\bar{\psi}_{\pm}\psi_{\pm} + \# \,\bar{\psi}_{\pm}\psi_{\mp} \sim \# \,\mathrm{e}^{i\int\,(\epsilon-\epsilon)\mathrm{d}t} + \# \,e^{i\int\,(\epsilon+\epsilon)\mathrm{d}t} \sim \# + \ \# \,e^{2\mathrm{i}\int\,\epsilon\,\mathrm{d}t}$$

⇒ the intra-band interference has higher frequency ⇒ source of HHG
 - is different from the naïve 3 step model in gas HHG, but is consistent w/ solid HHG
 [Vampa et al. (2014)]

• Total wavefunction = superposition of the two energy states: $\frac{eE_0}{\Omega} \cos(\Omega t)$

$$\psi = \psi_{+} + \psi_{-} = \# e^{-i\int \epsilon \, dt} + \# e^{+i\int \epsilon \, dt} \quad \text{W/} \quad \epsilon \sim \sqrt{m^{2} + p^{2}} \sim \sqrt{m^{2} + (eA(t))^{2}}$$

 \Rightarrow current can be decomposed into intra- and inter-band contributions

$$J \sim \bar{\psi}\gamma\psi \sim \# \,\bar{\psi}_{\pm}\psi_{\pm} + \# \,\bar{\psi}_{\pm}\psi_{\mp} \sim \# \,\mathrm{e}^{i\int(\epsilon-\epsilon)\mathrm{d}t} + \# \,e^{i\int(\epsilon+\epsilon)\mathrm{d}t} \sim \# + \ \# \,e^{2\mathrm{i}\int\epsilon\,\mathrm{d}t}$$

⇒ the intra-band interference has higher frequency ⇒ source of HHG - is different from the naïve 3 step model in gas HHG, but is consistent w/ solid HHG [Vampa et al. (2014)] • Cutoff law: F. T. $[J_{inter}] \sim \int dt \exp[-i \int dt (\omega - 2\epsilon)] \Rightarrow \omega_{cutoff} \sim \max_{t} 2\epsilon(t) \sim 2eE_0/\Omega$

- $\omega_{\text{cutoff}} \propto E_0$ is consistent w/ solid HHG, while $\omega_{\text{cutoff}} \propto \Omega^{-1}$ is our prediction

[Ghimire et al., (2011)]

Contents

1. Overview of strong-field physics

- becoming a hot topic in physics, thanks to the recent developments in exp.
- the Schwinger effect = a process to create "something" from "nothing"
- 2. Application of the Schwinger effect [HT, Hongo, Ikeda (2021)] ⇒ High-harmonic generation from the vacuum
 - first prediction of HHG from the vacuum
 - a good example of "interdisciplinarity" of strong-field physics
 - ⇒ your expertise should be useful in my area and vice versa !

3. Summary

<u>Summary</u>

Q: What happens if we make light (or "field" in general) stronger and stronger?

A: Our vacuum shall be destroyed and gives us nontrivial responses

- Why interesting: Unexplored nonpert. regime ⇒ many nontrivial phenomena we've never seen
- Why timely: Recent availability of strong fields e.g., high-power laser, magnetar, heavy-ion colls

Example phenomenon: HHG from the vacuum

- First prediction of HHG from the vauum
- An example of "interdisciplinarity" strong-field physics
 - ← borrowed ideas from optics, solid-state physics, & math

Exact-WKB recipe for Stokes phenomenon

<u>Step 2</u>: Compute Borel sum Ψ_{\pm} at each Stokes region

• Borel sum is well-defined and computable in each region separated by Stokes lines

$$\Psi_{\pm} = \int_{0}^{\infty} \frac{\mathrm{d}\eta}{\hbar} \,\mathrm{e}^{-\eta/\hbar} B[\psi_{\pm}](t;\eta) \sim \exp\left[\mp \frac{\mathrm{i}}{\hbar} \int_{t_{0}}^{t} \mathrm{d}t' \sqrt{Q(t')}\right] \times (1+O(\hbar)) \text{ at each Stokes region}$$

<u>Step 3</u>: Compute the Stokes constants α and β

• Whenever crosses Stokes lines, Ψ_{\pm} jumps discontinuously (**Stokes phenomenon**) \Rightarrow The discontinuity is given by the integral of singularities of $B[\psi_{\pm}]$ $\Psi_{+}(\text{region } A) = \alpha \Psi_{+}(\text{region } B) + \beta \Psi_{-}(\text{region } B) \qquad \sim \oint_{\text{sing.on}} \frac{d\eta}{\hbar} e^{-\eta/\hbar} B[\psi_{\pm}](t;\eta)$

a Stokes lin

Application to high-harmonic generation (2/2)

- WKB works more in the deep non-perturbative regime $E_0 \rightarrow \text{large}, \Omega \rightarrow \text{small}$
- Demonstration: magnitude of the harmonic peak at $\omega/\Omega = 9$

- Lessons:
 - (1) WKB makes it easier to analyze the non-perturbative regime
 - (2) Saturation & oscillation of the harmonic intensity
 - \Rightarrow consistent with recent semi-conductor exp. [Xia et al., (2020)] (but only *E*₀-dep. is measured and Ω-dep. is our prediction)

Peripheral case

[Nishimura (Osaka), Ohnishi (Kyoto), HT, in progress]

✓ Non-central collision ⇒ B & E • B are produced

- $e\mathbf{E} \cdot e\mathbf{B} = O((50 \text{ MeV})^4) \Rightarrow$ Non-negligible for QCD (Enough strong for electron and current quarks)
- Perhaps, a nice place to study chiral-anomaly-related stuffs

ex) chirality production via the Schwinger mechanism $N_5 = VT \frac{e\mathbf{E} \cdot e\mathbf{B}}{2\pi^2} \exp\left[-\pi \frac{m^2}{eE}\right]$