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Take-home messages:
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(1) Once 𝒆𝑬 > (typical energy scale), sthg extremely non-trivial occur
      (e.g., Schwinger effect ≈ “something” from “nothing” )

(2) Such strong fields are now (or soon will be) within the exp. reach

(3) Of relevance to hadron/QCD physics, in particular, heavy-ion collisions



Contents

1. Overview of strong-field physics

2. Recent development of the Schwinger effect

3. An application of the Schwinger effect to QCD: 
    the early-time dynamics of heavy-ion collisions

・focus on the Schwinger effect with time-dependent E fields

・Quark production is very fast !

Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, 2203.00019]

[HT, 1609.06189] [HT, Ph. D thesis (2017)]

[HT, Itakura, Fujii, 1405.6182] [HT, 1812.03630] [HT, Fujimori, Misumi, Nitta, Sakai, 2010.16080] 

[HT, Ironside, 2308.11248] [HT, Nishimura, Ohnishi, 2402.17136]
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What if field becomes strong ?

Weak field ( Τ𝒆𝑬, 𝒆𝑩 𝒎𝟐 ≪ 𝟏) Strong field ( Τ𝒆𝑬, 𝒆𝑩 𝒎𝟐 ≫ 𝟏)No field

𝑭

Only minor changes

⇒ Perturbative

⇒ Very well understood 

     in both exp.& theor.

ex.) Electron (anomalous) magnetic moment 𝑎 ≔
g−2

2
 

       ≈ Electron energy shift in a weak magnetic field

[Aoyama, Kinoshita, Nio (2017)]

𝑎 theor. = 1159652182.03 … × 10−12

𝑎 exp.  = 1159652180.73 … × 10−12
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What if field becomes strong ?

Weak field ( Τ𝒆𝑬, 𝒆𝑩 𝒎𝟐 ≪ 𝟏) Strong field ( Τ𝒆𝑬, 𝒆𝑩 𝒎𝟐 ≫ 𝟏)No field

𝑭

…

𝑭
𝑭

𝑭 𝑭

Only minor changes

⇒ Perturbative

⇒ Very well understood 

     in both exp.& theor.

ex.) Electron (anomalous) magnetic moment 𝑎 ≔
g−2

2
 

       ≈ Electron energy shift in a weak magnetic field

[Aoyama, Kinoshita, Nio (2017)]

⇒ Not understood well

𝑎 theor. = 1159652182.03 … × 10−12

𝑎 exp.  = 1159652180.73 … × 10−12

If field becomes strong, physics becomes totally different & nontrivial

time evol.

Big change !

⇒ Non-Perturbative

initial final



Novel processes with strong fields
In QED (for 𝒆𝑬, 𝒆𝑩 ∕ 𝒎𝑒

𝟐 ≫ 𝟏)

Ex1 Schwinger effect  Ex2 photon splitting   Ex3 vacuum birefringence Ex4 high-harmonic gen.

～

Ex 1 hadron properties

⇒ mass, form factor,
             nuclear force, ...

～ ～

[HT (2015)]

[D’Elia et al. (2022)]

[HT , Hongo, Ikeda (2021)]In hadron phys. / QCD (for 𝒆𝑬, 𝒆𝑩 ∕ 𝚲𝐐𝐂𝐃
𝟐 ≫ 𝟏)

[Miura, Hongo, HT (in prep.)]

Ex 2 QCD phase diagram

⇒ (inverse-)catalysis of chiral condensate,
     order of phase trans., novel phase, ...

Ex 3 Realtime dynamics

⇒ Anomalous transports, spin polarization,
     early-stage dynamics of HIC (QGP formation), ...  

In other systems: Gravity, Curved spacetime, Inflaton, Cond-mat analog, ...

Review: [Fedotov, Ilderton, Karbstein, King, 
               Seipt, HT, Torgrimsson, 2203.00019]
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However, extremely strong fields needed
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𝑒𝐸Guiness ≈ 1 keV 2
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∴ NOW is the BEST time to study strong-field physics

High-power laser

Strong regime ( Τ𝒆𝑬 𝒎𝒆
𝟐 > 𝟏)
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Invention of laser
(Nobel prize in 1964)

Invention of CPA
(Nobel prize in 2018)

●

●

Guiness record (2008年)
HERCULES @ USA

Latest: ELI

Suzaku (2005~2015), NICER (2017~)
XL-Calibur (2018~), IXPE (2021~), …

・ Heavy-ion collisions

・ Magnetar

・ Electron collider + Laser

Start soon: LUXE @ DESY, FACET-II @ SLAC

RIC (2000~), LHC (2012~), 
FAIR/NICA/HIAF/J-Parc-HI/… (20XX~)

𝐼 ∼ 1035 W/cm2

                              (𝑒𝐸, 𝑒𝐵 ∼ 100 MeV − 1 GeV 2) 

𝐼 ∼ 1029 W/cm2

                              (𝑒𝐸, 𝑒𝐵 > 𝑚𝑒
2 ∼ 1 MeV 2) 

𝐼 ∼ 1029 W/cm2

                              (𝑒𝐸, 𝑒𝐵 > 𝑚𝑒
2 ∼ 1 MeV 2) 

Extreme physical systems



A bit more on heavy-ion collisions
Low-energy ( 𝒔𝐍𝐍 = 𝟐 − 𝟏𝟎) HIC is interesting among other strong-field systems

I’m interested in this and wanna study this further
⇒ Chiral XXX ?  Axion electrodynamics?  Novel QCD phase?  Let’s discuss if interested 

(usually)

・ Sales points: (1) the only system that has supercritical 𝐹: =  𝑬𝟐 − 𝑩𝟐  >  0, 𝐺 ∶=  𝑬 ⋅ 𝑩 ≠  0

high-power laser magnetar High-energy HIC Low-energy HIC

Field profile

strength

lifetime

・ Numerical estimation of the EM profile in low-energy HIC (with JAM) 

𝐹 = 𝐺 = 0 𝐹 < 0, 𝐺 = 0 𝐹 < 0, 𝐺 = 0 𝐹 > 0, 𝐺 ≠ 0
subcritical supercritical far-supercritical

super-long

supercritical

longsuper-long super-short

z

x

y

E

B
impact para. b

E・B<0

E・B>0

𝐺
=

 𝑬
⋅

𝑩
 

𝐹
=

𝑬
𝟐

−
𝑩

𝟐

b = 0 fm 6 fm3 fm

@ 𝑠NN = 5.2 GeV

[HT, Nishimura, Ohnishi (2024)] [HT (in prep)]

(2) sufficiently long lived ⇒ will discuss later
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2 ∼ 1 MeV 2) 

Extreme physical systems



Novel processes with strong fields
In QED (for 𝒆𝑬, 𝒆𝑩 ∕ 𝒎𝑒
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⇒ Experimentally impossible in the 20th century
𝑒𝐸Guiness ≈ 1 keV 2
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2, ΛQCD
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In other systems: Gravity, Curved spacetime, Inflaton, Cond-mat analog, ...

Review: [Fedotov, Ilderton, Karbstein, King, 
               Seipt, HT, Torgrimsson, 2203.00019]
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Strong slow E field

tunneling

positive energy states

Dirac sea

gap ~ 2m

~ 2m

~ 2m/eE

[Sauter (1932)]
[Heisenberg, Euler (1936)]
[Schwinger (1951)]

x

Energy

Basic of the Schwinger effect

V = -eE x

Vacuum pair production by quantum tunneling in electric field



Strong slow E field

tunneling

positive energy states

Dirac sea

gap ~ 2m

~ 2m

~ 2m/eE

[Sauter (1932)]
[Heisenberg, Euler (1936)]
[Schwinger (1951)]

x

Energy

Basic of the Schwinger effect

V = -eE x

・ Non-perturbative 

     ⇒ Interesting, since it is the unexplored region of QFT

・ Vacuum process 

     ⇒ Fundamental, since all the physical processes occur on top of vacuum

Why important/interesting ? 

・ Interdisciplinarity 

     ⇒ Similar phenomena appear in many other areas of physics

e.g., Landau-Zener effect, Hawking radiation, broad resonance, ...

Vacuum pair production by quantum tunneling in electric field



・ Notice the strong exp suppression ⇒ the reason why Schwinger has never been verified in experiments

Strong slow E field

tunneling

positive energy states

Dirac sea

gap ~ 2m

~ 2m

~ 2m/eE

x

Energy

V = -eE x

Vacuum pair production by quantum tunneling in electric field

・ Simple theory:  Calculate scattering amplitude for | ۧ0; in  → | ۧ𝑒−𝑒+; out  

Well understood (only) for a constant E field (+ many assump.: weak coup., no backreac., ...)

Schwinger formula: 𝑁𝑒± =
𝑒𝐸 2𝑉𝑇

2𝜋 3
× exp −𝜋

 𝑚2

𝑒𝐸
∼ exp[−# × gap height × (gap length)]

[Schwinger (1951)] [Nikishov (1969)]

⇒  Evaluate w/ a dressed wavefunc (or propagator) : 

⇒  Sufficient to solve Dirac eq. w/ strong-field (classical c-number) potential: 

[Furry (1951)]

cf.) Guinness world record: 𝑒𝐸 ≈ 1 keV 2 ≪ 𝑚𝑒
2 = 𝑂 1 MeV 2 

[Yanovsky et al (2008)]

…𝑬 𝑬𝑬
=

0 = i𝜕 − 𝑒𝐴 − 𝑚 𝜓

[Sauter (1932)]
[Heisenberg, Euler (1936)]
[Schwinger (1951)]Basic of the Schwinger effect



Open problems

Relax the strong assumptions of the Schwinger formula 

・ to find a formula applicable to realistic situations 

    ・ to find something new/interesting

Strong-field guys are trying to go beyond the Schwinger formula

Examples

・ Beyond the constant-E-field approximation

・ Beyond the no-backreaction approximation

・ Beyond the weak-coupling limit

・ Observables other than N ?

(not a splitting hair but rich physics appears beyond the Schwinger formula ! ) 

Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, 2203.00019]
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What happens E field 
is not constant in time ?



 Time-dependent E field with strength 𝒆𝑬𝟎 & frequency 𝛀 (or lifetime 𝝉 = 𝟏/𝛀)

No Schwinger effect for “fast” E fields



 Time-dependent E field with strength 𝒆𝑬𝟎 & frequency 𝛀 (or lifetime 𝝉 = 𝟏/𝛀)

No Schwinger effect for “fast” E fields

Tunneling

~ 2𝑚

~ 2𝑚/𝑒𝐸0

Tunneling time Δ𝑡 ~
2𝑚

𝑒𝐸0

⇒ E field must be slower than Δ𝑡

⇒ Ω−1 ≿ Δ𝑡 

⇒ 1 ≿
Δ𝑡

Ω−1 =
Ω𝑚

𝑒𝐸0
≡ 𝛾 (Keldysh parameter)

Slow = small Ω
⇒ Non-pert. tunneling 𝑁~ exp[#/𝑒𝐸0]

[Keldysh (1965)]



 Time-dependent E field with strength 𝒆𝑬𝟎 & frequency 𝛀 (or lifetime 𝝉 = 𝟏/𝛀)

⇒ pair prod. when 𝑛Ω > 2𝑚

Fast = large Ω 
⇒ Pert. photon scattering 𝑁~𝑒𝐸0

2𝑛

Ω
Ω
Ω

~ 2m

No Schwinger effect for “fast” E fields

Tunneling

~ 2𝑚

~ 2𝑚/𝑒𝐸0

Tunneling time Δ𝑡 ~
2𝑚

𝑒𝐸0

⇒ E field must be slower than Δ𝑡

⇒ Ω−1 ≿ Δ𝑡 

⇒ 1 ≿
Δ𝑡

Ω−1 =
Ω𝑚

𝑒𝐸0
≡ 𝛾 (Keldysh parameter)

Slow = small Ω
⇒ Non-pert. tunneling 𝑁~ exp[#/𝑒𝐸0]

⇒ QED version of the photoelectric effect in material

[Keldysh (1965)]

⇒ Incoherent photons, rather than
     coherent E field

→



[HT, Fujiii, Itakura (2014)]

 “Phase diagram” of the Schwinger effect

Theory: (1) Semi-classical approx.
                     = Trans-series expansion in ℏ

𝑁 = ෍

𝑛,𝑚

𝑁𝑛,𝑚ℏ𝑛e−𝑚
𝑆
ℏ = (𝑁0,1 + 𝑂(ℏ)) 𝐞−

𝑺
ℏ + 𝑂(e−

2𝑆
ℏ )

(2) Compare with exactly solvable cases

[Brezin, Itzykson (1970)]  [Popov (1972)] 
[Berry (1989)] [Dunne, Shubert (2005)] 

[HT, Fujimori, Misumi, Nitta, Sakai (2020)]

Development 1/5: A better understanding of 
                                   non-pert Schwinger vs pert pair prod



𝜈 =
𝑒𝐸𝜏

Ω
= 

(Work done by field)

  (One photon energy)
= (number of photons)

𝛾 =
𝑚Ω

𝑒𝐸
 : Keldysh parameter

[HT, Fujiii, Itakura (2014)]

 “Phase diagram” of the Schwinger effect

Theory: (1) Semi-classical approx.
                     = Trans-series expansion in ℏ

𝑁 = ෍

𝑛,𝑚

𝑁𝑛,𝑚ℏ𝑛e−𝑚
𝑆
ℏ = (𝑁0,1 + 𝑂(ℏ)) 𝐞−

𝑺
ℏ + 𝑂(e−

2𝑆
ℏ )

(2) Compare with exactly solvable cases

[Brezin, Itzykson (1970)]  [Popov (1972)] 
[Berry (1989)] [Dunne, Shubert (2005)] 

[HT, Fujimori, Misumi, Nitta, Sakai (2020)]

・Two dim-less params control the interplay

    ⇐ 3 dimensionfull params in the system: 𝑒𝐸, 𝜏 ≔ 1/Ω, 𝑚

・Non-pert Schwinger if 𝜸 ≪ 𝟏 , 𝝂 ≫ 𝟏

Development 1/5: A better understanding of 
                                   non-pert Schwinger vs pert pair prod

Pert pair production if 𝜸 ≫ 𝟏 , 𝝂 ≪ 𝟏

Non-pert.

Pert.
(LO is enough)

Non-linear



𝜈 =
𝑒𝐸𝜏

Ω
= 

(Work done by field)

  (One photon energy)
= (number of photons)

𝛾 =
𝑚Ω

𝑒𝐸
 : Keldysh parameter

e.g.,  High-energy HIC is not non-pert.: 𝑒𝐹 ∼ 1 GeV 2 , 𝜏 ∼ 0.1 Τfm 𝑐 ⇒ 𝛾 ∼ ൝
10−3 𝑚 = ΛQCD

10−5 𝑚 = 𝑚e  
, 𝜈 ∼ 0.1

[HT, Fujiii, Itakura (2014)]

 “Phase diagram” of the Schwinger effect

Theory: (1) Semi-classical approx.
                     = Trans-series expansion in ℏ

𝑁 = ෍

𝑛,𝑚

𝑁𝑛,𝑚ℏ𝑛e−𝑚
𝑆
ℏ = (𝑁0,1 + 𝑂(ℏ)) 𝐞−

𝑺
ℏ + 𝑂(e−

2𝑆
ℏ )

(2) Compare with exactly solvable cases

[Brezin, Itzykson (1970)]  [Popov (1972)] 
[Berry (1989)] [Dunne, Shubert (2005)] 

[HT, Fujimori, Misumi, Nitta, Sakai (2020)]

・Two dim-less params control the interplay

    ⇐ 3 dimensionfull params in the system: 𝑒𝐸, 𝜏 ≔ 1/Ω, 𝑚

・Implication: “Strong field ⇒ Non-pert strong-field physics” is necessarily correct 

                     ⇒ Not only strength but also lifetime (& other dimful params, if any) is important

・Non-pert Schwinger if 𝜸 ≪ 𝟏 , 𝝂 ≫ 𝟏

Pert pair production if 𝜸 ≫ 𝟏 , 𝝂 ≪ 𝟏

Low-energy HIC is non-pert.: 𝑒𝐹 ∼ 100 MeV 2 , 𝜏 ∼ 10 Τfm 𝑐 ⇒ 𝛾 ∼ ൝
10−1 𝑚 = ΛQCD

10−4 𝑚 = 𝑚e  
, 𝜈 ∼ 10

[HT, Nishimura, Ohnishi, (2024)]

Non-pert.

Pert.
(LO is enough)

Non-linear

Low-energy 
HIC

( 𝑠𝑁𝑁 > 𝑂(100 GeV − 1 TeV)) 

( 𝑠𝑁𝑁 = 𝑂(1 − 10 GeV)) 

Development 1/5: A better understanding of 
                                   non-pert Schwinger vs pert pair prod



⇒ (So long as 𝒆𝑬𝟎< 𝒎𝟐 ) Fast E creates more particles than slow E does

Schwinger formula is inapplicable for fast E fields

Fast  ⇒ Pert          ⇒ Weak power suppression 𝑁~(𝑒𝐸0/𝑚2)2𝑛

Slow ⇒ Non-pert ⇒ Strong exp suppression 𝑁~ exp[− 𝑚2/𝑒𝐸0]

~

Development 2/5: Importance of pert pair production



⇒ (So long as 𝒆𝑬𝟎< 𝒎𝟐 ) Fast E creates more particles than slow E does

Schwinger formula is inapplicable for fast E fields

Fast  ⇒ Pert          ⇒ Weak power suppression 𝑁~(𝑒𝐸0/𝑚2)2𝑛

Slow ⇒ Non-pert ⇒ Strong exp suppression 𝑁~ exp[− 𝑚2/𝑒𝐸0]

~

Demonstration: 

Pair prod from pulsed E field 
w/lifetime 𝜏 = 1/Ω 

(Sauter field 𝑒𝐸 𝑡 =
𝑒𝐸0

cosh2(Ω𝑡)
) 

[HT, Fujiii, Itakura (2014)] 
[HT, Fujimori, Misumi, Nitta, Sakai (2020)]

Τ 𝑒𝐸0 𝑚2 = 0.1

Development 2/5: Importance of pert pair production



⇒ (So long as 𝒆𝑬𝟎< 𝒎𝟐 ) Fast E creates more particles than slow E does

Schwinger formula is inapplicable for fast E fields

Fast  ⇒ Pert          ⇒ Weak power suppression 𝑁~(𝑒𝐸0/𝑚2)2𝑛

Slow ⇒ Non-pert ⇒ Strong exp suppression 𝑁~ exp[− 𝑚2/𝑒𝐸0]

~

・ Enhancement of heavy quark prod in heavy-ion collisions

(next slide)

[Levai, Skokov (2010)]

・ Use of fast fields to enhance the Schwinger effect in weak-field exp. (e.g., laser)

     ⇒ Dynamically assisted Schwinger effect

Demonstration: 

Pair prod from pulsed E field 
w/lifetime 𝜏 = 1/Ω 

(Sauter field 𝑒𝐸 𝑡 =
𝑒𝐸0

cosh2(Ω𝑡)
) 

[HT, Fujiii, Itakura (2014)] 
[HT, Fujimori, Misumi, Nitta, Sakai (2020)]

Τ 𝑒𝐸0 𝑚2 = 0.1

Development 2/5: Importance of pert pair production

Some application to actual physical problems



Significant enhancement of the Schwinger effect 
     by superimposing fast (weak) E fields

[Dunne, Gies, Schutzhold (2008), (2009)]

Reduced by the pert scattering

Perturbative scattering

Tunneling
Fast E field

Tunneling

𝑁 ∼ exp[−# × gap height × (gap length)] ⇒ Enhancement of pair prod

Development 3/5: Dynamically assisted Schwinger effect (1/2)



Physics outcome

(old theory in 2010)
Semi-classical approx

Schwinger formula
(for const E)

Exact numerics (NEW theory)
Furry-picture pert theory

・ Expected: Huge enhancement, even for very weak fast field

𝐸 = 𝐸0 1 +
1

100
 cos Ω𝑡

[HT, (2019)] [Huang, HT, (2019)]

Field config

・ Un-expected: Oscillating behavior above the mass gap 

   ⇐ Related to the Dirac-sea structure in strong E field (next slide)

Technical advancement

・ Dressed scattering theory w/ unstable vacuum
   ≈ Expand w/ fast field, while keeping slow field exactly

Τ𝑒𝐸0 𝑚2 = 0.25

slow

fast

slow

2
fast

𝑁 ≃ =  +  +  …

Development 3/5: Dynamically assisted Schwinger effect (1/2)



Development 4/5: Modified Dirac-sea structure by E field (1/2)

∴ The spectrum of the dynamically-assisted Schwinger effect 

 reflects the modified Dirac-sea structure in strong E field

Dirac sea 

Positive energy band

Gap
Energy

E field direction



electrons in-coming wave

∴ The spectrum of the dynamically-assisted Schwinger effect 

 reflects the modified Dirac-sea structure in strong E field

Dirac sea 

Positive energy band

Gap
Energy

E field direction

Development 4/5: Modified Dirac-sea structure by E field (1/2)



∴ The spectrum of the dynamically-assisted Schwinger effect 

 reflects the modified Dirac-sea structure in strong E field

Dirac sea 

Positive energy band

Gap
Energy

E field direction

electrons in-coming wave

Electron reflected wave

Development 4/5: Modified Dirac-sea structure by E field (1/2)



∴ The spectrum of the dynamically-assisted Schwinger effect 

 reflects the modified Dirac-sea structure in strong E field

Dirac sea 

Positive energy band

Gap
Energy

E field direction

Electron 
distribution

Development 4/5: Modified Dirac-sea structure by E field (1/2)



・ Tunneling ⇒ Enhancement

Dirac sea 

Positive energy band

Gap
Energy

E field direction

cf. similar argument in Franz-Keldysh effect in semi-conductor

∴ The spectrum of the dynamically-assisted Schwinger effect 

 reflects the modified Dirac-sea structure in strong E field

Electron 
distribution

Development 4/5: Modified Dirac-sea structure by E field (1/2)



××

・ Tunneling ⇒ Enhancement

・ Reflection ⇒ Oscillation

Dirac sea 

Positive energy band

Gap
Energy

E field direction

cf. similar argument in Franz-Keldysh effect in semi-conductor

∴ The spectrum of the dynamically-assisted Schwinger effect 

 reflects the modified Dirac-sea structure in strong E field

Electron 
distribution

××

Development 4: Modified Dirac-sea structure by E field (1/2)



The modified Dirac-sea struc affects everything

∵ Any process occurs on top of the vacuum

Larger electron density ⇒ affects more

Development 4/5: Modified Dirac-sea structure by E field (2/2)



The modified Dirac-sea struc affects everything

∵ Any process occurs on top of the vacuum

[HT, Ironside, (2024)]

Example: Photon birefringence (electric permittivity) in strong E field 

𝐸

ℰ ∝ cos 𝜔𝑡 

𝒟 = 𝜀ℰ = 𝑛2ℰ = 1 + 𝜒 ℰ

Imaginary part

𝐸 𝐸

Τ𝑒𝐸 𝑚2 = 0.25Τ𝑒𝐸 𝑚2 = 0.25

Kramers-Kronig rel.

Im
𝜀

𝐸
−

𝜀
0

/𝑒
2

R
e

𝜀
𝐸

−
𝜀

0
/𝑒

2

Larger electron density ⇒ affects more

cf. Birefringence in B field [Hattori, Itakura (2013)]

Real part

⇒ Characteristic oscillation, as expected from the modified Dirac-sea structure !

Development 4/5: Modified Dirac-sea structure by E field (2/2)



Contents

1. Overview of strong-field physics

2. Recent development of the Schwinger effect

3. An application of the Schwinger effect to QCD: 
    the early-time dynamics of heavy-ion collisions

・focus on the Schwinger effect with time-dependent E fields

・Quark production is very fast !

[Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, 2203.00019]

[HT, 1609.06189] [HT, Ph. D thesis]

[HT, Itakura, Fujii, 1405.6182] [HT, 1812.03630] [HT, Fujimori, Misumi, Nitta, Sakai, 2010.16080] 

[HT, Ironside, 2308.11248] [HT, Nishimura, Ohnishi, 2402.17136]
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before coll. coll. QGP Hadron gas

       > 0 fm/c            0 fm/c           ~ 1 fm/c                   ~ 10 fm/c

QGP

■ & ■ are well understood

Dense gluons

⇒ pQCD (color glass condensate ?)

(nearly) perfect liquid

     ⇒ hydrodynamics

          ( + hadron transport)

Spacetime evolution of high-energy HIC (1/2)

DIS @ HERA



QGP

■ is less understood

？

・ How are the huge number of quarks & gluons produced dN/dy=O(1000) ?

・ How do they thermalize (hydrodynamize) to form the liquid-like QGP？

・ How to explain the “early thermalization” O(1fm/c), indicated by exp data？

⇒ Formation dynamics of QGP is still an open issue

Not only important for completing our spacetime picture of HIC
     but also for deepening our understanding of QGP 
     (e.g.: provide the initial cond. for hydro sim. ⇒ better determination of QGP properties)

before coll. coll. QGP Hadron gas

       > 0 fm/c            0 fm/c           ~ 1 fm/c                   ~ 10 fm/c

Spacetime evolution of high-energy HIC (2/2)

cf. the weak-coupling kinetic picture from Heidelberg group



Low-Nussinov model: Low, Nussinov, Casher, Neuberger (1970~80)

Glasma: McLerran, Lappi, Kovner, Weigert (~2005)

[Kerman, Matsui, Gatoff (1987)]

The key: Decay of the strong color EM field into particles

⇒ Schwinger effect !

Strong color EM field (glasma) (1/2)
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Low-Nussinov model: Low, Nussinov, Casher, Neuberger (1970~80)

Glasma: McLerran, Lappi, Kovner, Weigert (~2005)
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[Kerman, Matsui, Gatoff (1987)]

The key: Decay of the strong color EM field into particles

⇒ Schwinger effect !

DIS @ HERA

high-energy heavy ion

dense gluon state

“color plate” 
with huge color density

(𝜎 ∼ 𝑄𝑠
2 ∼ 𝑂 1 GeV2 )

≃
＝

Strong color EM field (glasma) (1/2)

∝ 1/ 𝑠NN
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just after a collision

⇒
≃ [Lappi (2006)]

strong color EM field 
(𝑔𝐸, 𝑔𝐵 = 𝑂 1  GeV2)

𝑄𝑠𝜏
𝑄

𝑠4
/𝑔

2an expanding 
“color capacitor”

(𝜎 ∼ 𝑄𝑠
2 ∼ 𝑂 1 GeV2 )

Low-Nussinov model: Low, Nussinov, Casher, Neuberger (1970~80)

Glasma: McLerran, Lappi, Kovner, Weigert (~2005)

[Kerman, Matsui, Gatoff (1987)]

The key: Decay of the strong color EM field into particles

⇒ Schwinger effect !

Strong color EM field (glasma) (2/2)



Setup:

What I am going to do

・ Boost-invariantly expanding color E field 𝐸(𝜏, 𝜂, 𝒙⊥) = 𝐸(𝜏)

t

z

𝝉 = 𝐜𝐨𝐧𝐬𝐭.

𝜼 = 𝐜𝐨𝐧𝐬𝐭.

𝑬

𝑬

𝑬
𝝉 = 𝒕𝟐 − 𝒛𝟐

 𝜼 =
𝟏

𝟐
𝐥𝐧

𝒕 + 𝒛

𝒕 − 𝒛

Study the quark & gluon production in the early-time dynamics of HIC 

by applying the Schwinger-effect realtime technique developed in QED to QCD

Purpose:

・ Neglect color magnetic field 

     (⇐ problem due to gluon instability)

・ Solve QCD within mean-field approx. (next slides)

・ QCD with Nc=3 and Nf=6 (with actual quark masses)



Mean-field theory (1/2)
QED: [Kluger, Eisenberg, Svetitsky, 
           Cooper, Mottola (~1990)]
          [Tanji (2008)]

Same as: 
Bogoliubov-de Gennes (TD-BdG) 
in cond-mat



𝐿QCD = −
1

2
tr 𝐹𝜇𝜈𝐹𝜇𝜈 + 𝐿quark + 𝐿FP+GF

Mean-field theory (1/2)
QED: [Kluger, Eisenberg, Svetitsky, 
           Cooper, Mottola (~1990)]
          [Tanji (2008)]

Same as: 
Bogoliubov-de Gennes (TD-BdG) 
in cond-mat



STEP 1 Split the total gauge field 𝐴 into classical (strong) part ҧ𝐴 = 𝐴  and quantum    

              fluctuation on top of it 𝑎, i.e., 𝐴 = ҧ𝐴 + 𝑎

STEP 2 Expand 𝐿QCD i.t.o 𝑎

𝐿QCD = −
1

2
tr 𝐹𝜇𝜈𝐹𝜇𝜈 + 𝐿quark + 𝐿FP+GF

Mean-field theory (1/2)
QED: [Kluger, Eisenberg, Svetitsky, 
           Cooper, Mottola (~1990)]
          [Tanji (2008)]

Same as: 
Bogoliubov-de Gennes (TD-BdG) 
in cond-mat



𝐿QCD = −
1

2
tr ത𝐹𝜇𝜈 ത𝐹𝜇𝜈

               + 𝑂 𝑎1  +  𝑂 𝑎2  +  𝑔 × 𝑂 𝑎3  +  𝑔2 × 𝑂 𝑎4  +  𝐿quark +𝐿𝐹𝑃+𝐺𝐹
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𝑎 𝑎

𝑎

𝑎
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ҧ𝐴 ҧ𝐴 ҧ𝐴

STEP 2 Expand 𝐿QCD i.t.o 𝑎

𝐿QCD = −
1

2
tr 𝐹𝜇𝜈𝐹𝜇𝜈 + 𝐿quark + 𝐿FP+GF

Mean-field theory (1/2)
QED: [Kluger, Eisenberg, Svetitsky, 
           Cooper, Mottola (~1990)]
          [Tanji (2008)]

Same as: 
Bogoliubov-de Gennes (TD-BdG) 
in cond-mat



𝐿QCD = −
1

2
tr ത𝐹𝜇𝜈 ത𝐹𝜇𝜈
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𝑎

STEP 1 Split the total gauge field 𝐴 into classical (strong) part ҧ𝐴 = 𝐴  and quantum    

              fluctuation on top of it 𝑎, i.e., 𝐴 = ҧ𝐴 + 𝑎

𝑎 𝑎

𝑎

𝑎

𝑎 𝑎

𝑎

𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎

𝑎 is couplted to ҧ𝐴 in non-perturbatively: = + + + …

ҧ𝐴 ҧ𝐴 ҧ𝐴

→ →

𝐿QCD = (up to the second orer in 𝑎)

color current 𝑗

STEP 2 Expand 𝐿QCD i.t.o 𝑎

STEP 3 Apply mean-field approx. 

              to the non-linear 

              terms 𝑂 𝑎3, 𝑎4

𝐿QCD = −
1

2
tr 𝐹𝜇𝜈𝐹𝜇𝜈 + 𝐿quark + 𝐿FP+GF

𝑎

𝑎

𝑎 𝑎

𝑎

𝑎 𝑎

𝑎

𝑎

(local) self-energy 𝑀

Mean-field theory (1/2)
QED: [Kluger, Eisenberg, Svetitsky, 
           Cooper, Mottola (~1990)]
          [Tanji (2008)]

Same as: 
Bogoliubov-de Gennes (TD-BdG) 
in cond-mat



EoM for quantum fluct. 𝑎

0 = 𝜕 + 𝑖𝑔 ҧ𝐴 2𝑔𝜇𝜈 + 𝑀𝜇𝜈 𝑎𝜈 𝑗𝜇 = 𝜕𝜈
ത𝐹𝜈𝜇 + 𝑓𝜈𝜇

EoM for classical field ത𝐹

STEP 4 Get equation of motion

Coupled linear EoMs

Mean-field theory (2/2)
QED: [Kluger, Eisenberg, Svetitsky, 
           Cooper, Mottola (~1990)]
          [Tanji (2008)]

Same as: 
Bogoliubov-de Gennes (TD-BdG) 
in cond-mat



EoM for quantum fluct. 𝑎

0 = 𝜕 + 𝑖𝑔 ҧ𝐴 2𝑔𝜇𝜈 + 𝑀𝜇𝜈 𝑎𝜈 𝑗𝜇 = 𝜕𝜈
ത𝐹𝜈𝜇 + 𝑓𝜈𝜇

EoM for classical field ത𝐹

STEP 4 Get equation of motion

= + + + …

ҧ𝐴 ҧ𝐴 ҧ𝐴

Multiple scattering b/w ҧ𝐴 and 𝑎 

⇒ Particle production of 𝑎 from ҧ𝐴 Current 𝑗𝜇  produced by 𝑎 screens out ത𝐹

⇒ Backreaction to ത𝐹 by 𝑎

Coupled linear EoMs

Mean-field theory (2/2)
QED: [Kluger, Eisenberg, Svetitsky, 
           Cooper, Mottola (~1990)]
          [Tanji (2008)]

Same as: 
Bogoliubov-de Gennes (TD-BdG) 
in cond-mat



(1) assume 𝑂 𝑎2  terms (𝑀𝜇𝜈 and 𝑗𝜇) are negligible (≈ no backreaction)
⇒ analytically solvable ⇒ gives essentially the same to the Schwinger formula

(2) don’t neglect 𝑂 𝑎2  terms (≈ w/ backreaction) ⇒ numerically doable (⇒ this talk)

EoM for quantum fluct. 𝑎

0 = 𝜕 + 𝑖𝑔 ҧ𝐴 2𝑔𝜇𝜈 + 𝑀𝜇𝜈 𝑎𝜈 𝑗𝜇 = 𝜕𝜈
ത𝐹𝜈𝜇 + 𝑓𝜈𝜇

EoM for classical field ത𝐹

STEP 4 Get equation of motion

= + + + …

ҧ𝐴 ҧ𝐴 ҧ𝐴

Multiple scattering b/w ҧ𝐴 and 𝑎 

⇒ Particle production of 𝑎 from ҧ𝐴 Current 𝑗𝜇  produced by 𝑎 screens out ത𝐹

⇒ Backreaction to ത𝐹 by 𝑎

Coupled linear EoMs

STEP 5 Solve EoM !

Mean-field theory (2/2)
QED: [Kluger, Eisenberg, Svetitsky, 
           Cooper, Mottola (~1990)]
          [Tanji (2008)]

Same as: 
Bogoliubov-de Gennes (TD-BdG) 
in cond-mat



Results
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 𝝐
 𝐆

𝐞
𝐕

𝟒

classical 
E field (= 𝐸2/2)

gluons

quarks

Total (■+■+■)

Decay with oscillation (plasma oscillation)

Time 𝝉 𝐆𝐞𝐕−𝟏

Due to the particle prod (+ the Bjorken exp), the initial classical field
     decays into quark & gluon particles rapidly 𝜏 ∼ 10 GeV−1 ∼ 2 fm/𝑐

Results (1/4): Energy balance

cf. Non-expanding QED: [Kluger et al. (~1990)] [Tanji (2008)]

∵ ሶ𝐸 = −𝐽 ∝ (particles′ velocity), but particles do not stop immediately at 𝐸 = 0



(longitudinal) momentum dist 
𝐝𝟔𝑵

𝐝𝒙𝑻
𝟐𝐝𝜼 𝐝𝒑𝑻

𝟐𝐝𝒑𝜼
 at 𝒑𝑻 ∼ 𝟎 

Quark Gluon

When comes back to p=0, where new particles are being produced, 
     quantum interference occurs (known as stuckelberg interference in cond-mat)

・ gluon: Bose enhancement ⇒ increase of the production

・ quark: Pauli blocking ⇒ saturation behavior

Results (2/4): (longitudinal) momentum dist. dN/dp

Plasma oscillation = particles are going back and forth



time 𝝉 𝐆𝐞𝐕−𝟏

Τ
𝐝

𝑵
𝐝

𝒚
𝒑

/𝑺
⊥

 𝐆
𝐞

𝐕
𝟐

A huge number of particles O(1000) can actually be produced at early time τ=O(1fm/c)

gluon

quark

Total (■+■)

Quark production is fast and abundant

⇒ Strong-field physics (= decay of strong field into particles) actually plays 
     an important role in the early-stage dynamics of HIC
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(cf. 𝑆⊥ ∼ 𝑂 4000  GeV−2)

⇒ Quark DoG is non-negligible

     ・ should affect the early-stage dynamics ...

     ・ good news for CME search (∵ U(1) B field decays very rapidly )

Results (3/4): yields N per unit rapidity



time 𝝉 𝐆𝐞𝐕−𝟏classical field particles

long pressure 𝑷𝑳/𝝐

trans pressure 𝑷𝑻/𝝐

Even within mean-field approx. (i.e., no interaction), 
      anisotropy gets relaxed significantly ( Τ𝑃𝑇 𝑃𝐿 ∼ 0.5) 

Outlook: Need to go beyond mean-field approx. to really discuss 
                       thermalization (hydrodynamization)

(∵ non-zero long pressure due to acceleration by E field ⇒ don’t simply go to the free streaming 𝑃𝐿 = 0)

Results (4/4): anisotropy as a measure of thermalization 

(cf. go beyond MFA is new not only in QCD but also in QED, so should be interesting ...)
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Today’s talk

Take-home messages:

Q: What happens if we make light (or “field” in general) stronger and stronger ?

Purpose: Review physics of such strong field

?
𝐼 ∼ 10−5 W/cm2 106 W/cm2

LED Laser welding Cond.-mat 
(THz laser)

or 𝑒𝐸 ∼ 10−1 ΤeV cm

          ∼ 10−3eV 2 

104 ΤeV cm

10−1eV 2

106 ΤeV cm

1 eV 2

1010 W/cm2

???

Our limit 
at the present

Guiness record

HERCULES @ USA (2008)

1022 W/cm2

1012 ΤeV cm

1 keV 2

Daily life Industry Science                

(1) Once 𝒆𝑬 > (typical energy scale), sthg extremely non-trivial occur
      (e.g., Schwinger effect ≈ “something” from “nothing” )

(2) Such strong fields are now (or soon will be) within the exp. reach

(3) Of relevance to hadron/QCD physics, in particular, heavy-ion collisions
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