Strong-field physics in heavy-ion collisions

Hidetoshi Taya

(Keio University)

Today's talk

Q: What happens if we make light (or "field" in general) stronger and stronger?

Today's talk

Q: What happens if we make light (or "field" in general) stronger and stronger?

<u>Purpose</u>: Review physics of such strong field

Take-home messages:

- (1) Once *eE* > (typical energy scale), sthg extremely non-trivial occur (e.g., Schwinger effect ≈ "something" from "nothing")
- (2) Such strong fields are now (or soon will be) within the exp. reach
- (3) Of relevance to hadron/QCD physics, in particular, heavy-ion collisions

Contents

1. Overview of strong-field physics

Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, 2203.00019]

2. Recent development of the Schwinger effect

• focus on the Schwinger effect with time-dependent E fields

[<u>HT</u>, Itakura, Fujii, 1405.6182] [<u>HT</u>, 1812.03630] [<u>HT</u>, Fujimori, Misumi, Nitta, Sakai, 2010.16080] [<u>HT</u>, Ironside, 2308.11248] [<u>HT</u>, Nishimura, Ohnishi, 2402.17136]

3. An application of the Schwinger effect to QCD: the early-time dynamics of heavy-ion collisions

• Quark production is very fast ! [HT, 1609.06189] [HT, Ph. D thesis (2017)]

<u>Contents</u>

1. Overview of strong-field physics

Review: [Fedotov, Ilderton, Karbstein, King, Seipt, <u>HT</u>, Torgrimsson, 2203.00019]

2. Recent development of the Schwinger effect

• focus on the Schwinger effect with time-dependent E fields

[<u>HT</u>, Itakura, Fujii, 1405.6182] [<u>HT</u>, 1812.03630] [<u>HT</u>, Fujimori, Misumi, Nitta, Sakai, 2010.16080] [<u>HT</u>, Ironside, 2308.11248] [<u>HT</u>, Nishimura, Ohnishi, 2402.17136]

3. An application of the Schwinger effect to QCD: the early-time dynamics of heavy-ion collisions

• Quark production is very fast ! [HT, 1609.06189] [HT, Ph. D thesis (2017)]

No field

No field

Weak field ($eE, eB/m^2 \ll 1$) Strong field ($eE, eB/m^2 \gg 1$)

No field Weak field ($eE, eB/m^2 \ll 1$) Strong field ($eE, eB/m^2 \gg 1$)

Only minor changes

 \Rightarrow Perturbative

⇒ Very well understood in both exp.& theor.

ex.) Electron (anomalous) magnetic moment $a \coloneqq \frac{g-2}{2}$

≈ Electron energy shift in a weak magnetic field $\overline{}$

 $a(\text{theor.}) = 1159652182.03 \dots \times 10^{-12}$ $a(\text{exp.}) = 1159652180.73 \dots \times 10^{-12}$ [Aoyama, Kinoshita, Nio (2017)]

If field becomes strong, physics becomes totally different & nontrivial

Novel processes with strong fields

- ✓ In QED (for $eE, eB / m_e^2 \gg 1$) Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, 2203.00019] Ex1 Schwinger effect Ex2 photon splitting Ex3 vacuum birefringence Ex4 high-harmonic gen. ✓ In hadron phys. / QCD (for $eE, eB / \Lambda_{OCD}^2 \gg 1$) [HT, Hongo, Ikeda (2021)] Ex 1 hadron properties lattice (Hidaka, Yamamoto [7]) lattice (Luschevskava et al. [8] $\overline{s} \downarrow u \uparrow (K^+)$ \Rightarrow mass, form factor, $\overline{d}\uparrow d\uparrow (a^0$ $\bar{s} \downarrow d \downarrow (K^{*0})$ nuclear force, ... [HT (2015)] [Miura, Hongo, <u>HT</u> (in prep.)] $rand \perp (K^0)$ $\overline{d} \uparrow u \uparrow (o^*$ $\overline{u}\downarrow d\downarrow (\rho$ = Thut (K++ $\overline{u}\downarrow s\downarrow (K^{*-})$ Ex 2 QCD phase diagram \Rightarrow (inverse-)catalysis of chiral condensate, T [MeV] [D'Elia et al. (2022)] order of phase trans., novel phase, ... 160 Ex 3 Realtime dynamics Deconfined phase $T_E(B_E)$ Confined phase \Rightarrow Anomalous transports, spin polarization, early-stage dynamics of HIC (QGP formation), ... $eB_c \simeq 18 \text{ GeV}^2?$ $eB [GeV^2]$
- ✓ In other systems: Gravity, Curved spacetime, Inflaton, Cond-mat analog, ...

Novel processes with strong fields

✓ In QED (for $eE, eB / m_e^2 \gg 1$) Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, 2203.00019] Ex1 Schwinger effect Ex2 photon splitting Ex3 vacuum birefringence Ex4 high-harmonic gen. ✓ In hadron phys. / QCD (for $eE, eB / \Lambda_{OCD}^2 \gg 1$) [HT, Hongo, Ikeda (2021)] Ex 1 hadron properties lattice (Hidaka, Yamamoto [7]) lattice (Luschevskava et al. [8 $\downarrow u \uparrow (K^+)$ \Rightarrow mass, form factor, $\bar{s} \downarrow d \downarrow (K^{*0}$ nuclear force, ... [HT (2015)] [Miura, Hongo, <u>HT</u> (in prep.)] $\overline{s}\uparrow d \perp (K^0)$ $\overline{u}\downarrow d\downarrow (\rho$ $\overline{u}\downarrow s\downarrow (K^{*-})$ Ex 2 QCD phase diagram \Rightarrow (inverse-)catalysis of chiral condensate, T [MeV] [D'Elia et al. (2022)] order of phase trans., novel phase, ... 160 Ex 3 Realtime dynamics Deconfined phase $T_E(B_E)$ Confined phase \Rightarrow Anomalous transports, spin polarization, early-stage dynamics of HIC (QGP formation), ... $eB_c \simeq 18 \text{ GeV}^2?$ $eB [GeV^2]$ ✓ In other systems: Gravity, Curved spacetime, Inflaton, Cond-mat analog, ...

Recent availability of strong EM fields

The situation changing: becoming able to create/observe strong light

 \therefore NOW is the BEST time to study strong-field physics

Recent availability of strong EM fields

The situation changing: becoming able to create/observe strong light

High-power laser

Extreme physical systems

Heavy-ion collisions

RIC (2000~), LHC (2012~), FAIR/NICA/HIAF/J-Parc-HI/... (20XX~)

 $I \sim 10^{35} \text{ W/cm}^2$ (eE, eB ~ (100 MeV - 1 GeV)²)

• Electron collider + Laser

Start soon: LUXE @ DESY, FACET-II @ SLAC

 $I \sim 10^{29} \,\text{W/cm}^2$ (*eE*, *eB* > $m_e^2 \sim (1 \,\text{MeV})^2$)

e' e pair dump

• Magnetar

Suzaku (2005~2015), NICER (2017~) XL-Calibur (2018~), IXPE (2021~), ...

 $I \sim 10^{29} \text{ W/cm}^2$ (*eE*, *eB* > $m_e^2 \sim (1 \text{ MeV})^2$)

... NOW is the BEST time to study strong-field physics

A bit more on heavy-ion collisions

Low-energy ($\sqrt{s_{NN}} = 2 - 10$) HIC is interesting among other strong-field systems

• Sales points: (1) the only system that has supercritical $F := E^2 - B^2 > 0$, $G := E \cdot B \neq 0$ (2) sufficiently long lived \Rightarrow will discuss later

	high-power laser	magnetar	High-energy HIC	Low-energy HIC
Field profile	(usually) $F=G=0$	F < 0, G = 0	F < 0, G = 0	$F > 0, G \neq 0$
strength	subcritical	supercritical	far-supercritical	supercritical
lifetime	super-long	super-long	super-short	long

t = 0.5 fm/c at z = 0.0 fm

t = 0.5 fm/c at z = 0.0 fm

• Numerical estimation of the EM profile in low-energy HIC (with JAM)

I'm interested in this and wanna study this further

 $r \Rightarrow$ Chiral XXX ? Axion electrodynamics? Novel QCD phase? Let's discuss if interested \odot

Recent availability of strong EM fields

The situation changing: becoming able to create/observe strong light

High-power laser

Extreme physical systems

Heavy-ion collisions

RIC (2000~), LHC (2012~), FAIR/NICA/HIAF/J-Parc-HI/... (20XX~)

 $I \sim 10^{35} \text{ W/cm}^2$ (*eE*, *eB* ~ m_{π}^2 ~ (140 MeV)²)

• Electron collider + Laser

Start soon: LUXE @ DESY, FACET-II @ SLAC

 $I \sim 10^{29} \,\text{W/cm}^2$ (*eE*, *eB* > $m_e^2 \sim (1 \,\text{MeV})^2$)

aset magnet e Compton photon e e pair e beam dump

• Magnetar

Suzaku (2005~2015), NICER (2017~) XL-Calibur (2018~), IXPE (2021~), ...

 $I \sim 10^{29} \text{ W/cm}^2$ (*eE*, *eB* > $m_e^2 \sim (1 \text{ MeV})^2$)

... NOW is the BEST time to study strong-field physics

Novel processes with strong fields

✓ In QED (for $eE, eB / m_e^2 \gg 1$) Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, 2203.00019] Ex1 Schwinger effect Ex2 photon splitting Ex3 vacuum birefringence Ex4 high-harmonic gen. ✓ In hadron phys. / QCD (for $eE, eB / \Lambda_{OCD}^2 \gg 1$) [HT, Hongo, Ikeda (2021)] Ex 1 hadron properties lattice (Hidaka, Yamamoto [7]) lattice (Luschevskava et al. [8 $\downarrow u \uparrow (K^+)$ \Rightarrow mass, form factor, $\bar{s} \downarrow d \downarrow (K^{*0}$ nuclear force, ... [HT (2015)] [Miura, Hongo, <u>HT</u> (in prep.)] $\overline{s} \uparrow d \downarrow (K^0)$ $\overline{d} \uparrow u \uparrow (o^*$ $\overline{u}\downarrow d\downarrow (\rho$ $\overline{u}\downarrow s\downarrow (K^{*-})$ Ex 2 QCD phase diagram \Rightarrow (inverse-)catalysis of chiral condensate, T [MeV] [D'Elia et al. (2022)] order of phase trans., novel phase, ... 160 Ex 3 Realtime dynamics Deconfined phase $T_E(B_E)$ Confined phase \Rightarrow Anomalous transports, spin polarization, early-stage dynamics of HIC (QGP formation), ... $eB_c \simeq 18 \text{ GeV}^2?$ $eB [GeV^2]$ ✓ In other systems: Gravity, Curved spacetime, Inflaton, Cond-mat analog, ...

However, extremely strong fields needed ⇒ Experimentally impossible in the 20th century

Novel processes with strong fields

Contents

1. Overview of strong-field physics

[Fedotov, Ilderton, Karbstein, King, Seipt, <u>HT</u>, Torgrimsson, 2203.00019]

2. Recent development of the Schwinger effect

• focus on the Schwinger effect with time-dependent E fields

[<u>HT</u>, Itakura, Fujii, 1405.6182] [<u>HT</u>, 1812.03630] [<u>HT</u>, Fujimori, Misumi, Nitta, Sakai, 2010.16080] [<u>HT</u>, Ironside, 2308.11248] [<u>HT</u>, Nishimura, Ohnishi, 2402.17136]

3. An application of the Schwinger effect to QCD: the early-time dynamics of heavy-ion collisions

• Quark production is very fast ! [HT, 1609.06189] [HT, Ph. D thesis]

Basic of the Schwinger effect

[Sauter (1932)] [Heisenberg, Euler (1936)] [Schwinger (1951)]

✓ Vacuum pair production by quantum tunneling in electric field

Basic of the Schwinger effect

[Sauter (1932)] [Heisenberg, Euler (1936)] [Schwinger (1951)]

Vacuum pair production by quantum tunneling in electric field

Why important/interesting?

Vacuum process

 \Rightarrow Fundamental, since all the physical processes occur on top of vacuum

Non-perturbative

 \Rightarrow Interesting, since it is the unexplored region of QFT

- Interdisciplinarity
 - ⇒ Similar phenomena appear in many other areas of physics e.g., Landau-Zener effect, Hawking radiation, broad resonance, ...

Basic of the Schwinger effect

[Sauter (1932)] [Heisenberg, Euler (1936)] [Schwinger (1951)]

Well understood (only) for a constant E field (+ many assump.: weak coup., no backreac., ...)

Schwinger formula:
$$N_{e^{\pm}} = \frac{(eE)^2 VT}{(2\pi)^3} \times \exp\left[-\pi \frac{m^2}{eE}\right] \sim \exp\left[-\# \times (\text{gap height}) \times (\text{gap length})\right]$$

• Simple theory: Calculate scattering amplitude for $|0; in\rangle \rightarrow |e^-e^+; out\rangle$

⇒ Evaluate ψ w/ a dressed wavefunc (or propagator): $----= = \underbrace{e \cdot e \cdot e}_{[Furry (1951)]}$ ⇒ Sufficient to solve Dirac eq. w/ strong-field (classical c-number) potential: $0 = [i\partial - eA - m]\psi$ • Notice the strong exp suppression ⇒ the reason why Schwinger has never been verified in experiments cf.) Guinness world record: $eE \approx (1 \text{ keV})^2 \ll m_e^2 = 0(1 \text{ MeV})^2$

[Yanovsky et al (2008)]

Open problems

Strong-field guys are trying to go beyond the Schwinger formula

- ✓ Relax the strong assumptions of the Schwinger formula
 - to find a formula applicable to realistic situations
 - to find something new/interesting (not a splitting hair but rich physics appears beyond the Schwinger formula !)

✓ Examples

- Beyond the constant-E-field approximation
- Beyond the no-backreaction approximation
- Beyond the weak-coupling limit
- Observables other than N?

Open problems

Strong-field guys are trying to go beyond the Schwinger formula

- ✓ Relax the strong assumptions of the Schwinger formula
 - to find a formula applicable to realistic situations
 - to find something new/interesting (not a splitting hair but rich physics appears beyond the Schwinger formula !)

✓ Examples

- Beyond the constant-E-field approximation
- Beyond the no-backreaction approximation
- Beyond the weak-coupling limit
- Observables other than N?

What happens E field is not constant in time ?

No Schwinger effect for "fast" E fields

✓ Time-dependent E field with strength eE_0 & frequency Ω (or lifetime $\tau = 1/\Omega$)

No Schwinger effect for "fast" E fields

✓ Time-dependent E field with strength eE_0 & frequency Ω (or lifetime $\tau = 1/\Omega$)

No Schwinger effect for "fast" E fields

✓ Time-dependent E field with strength eE_0 & frequency Ω (or lifetime $\tau = 1/\Omega$)

\Rightarrow QED version of the photoelectric effect in material

Development 1/5: A better understanding of

non-pert Schwinger vs pert pair prod

✓ "Phase diagram" of the Schwinger effect

Theory: (1) Semi-classical approx.	$N = \sum N_{n,m} \hbar^n \mathrm{e}^{-m_{\overline{h}}^S} = (1)$	$N_{0,1} + O(\hbar)) \mathbf{e}^{-\frac{S}{\hbar}} + O(\mathrm{e}^{-\frac{2S}{\hbar}})$
= Trans-series expansion in \hbar	n,m	[Brezin, Itzykson (1970)] [Popov (1972)] [Berry (1989)] [Duppe, Shubert (2005)]
(2) Compare with exactly solvable of	CASES [<u>HT</u> , Fujiii, Itakura (2014)]	[HT, Fujimori, Misumi, Nitta, Sakai (2020)]

Development 1/5: A better understanding of

non-pert Schwinger vs pert pair prod

✓ "Phase diagram" of the Schwinger effect

Development 1/5: A better understanding of

non-pert Schwinger vs pert pair prod

✓ "Phase diagram" of the Schwinger effect

Implication: "Strong field ⇒ Non-pert strong-field physics" is necessarily correct

 \Rightarrow Not only strength but also lifetime (& other dimful params, if any) is important

e.g., High-energy HIC is not non-pert.: $eF \sim (1 \text{ GeV})^2$, $\tau \sim 0.1 \text{ fm}/c \Rightarrow \gamma \sim \begin{cases} 10^{-3} (m = \Lambda_{\text{QCD}}) \\ 10^{-5} (m = m_e) \end{cases}$, $\nu \sim 0.1 \\ (\sqrt{s_{NN}} > 0(100 \text{ GeV} - 1 \text{ TeV})) \end{cases}$ Low-energy HIC is non-pert.: $eF \sim (100 \text{ MeV})^2$, $\tau \sim 10 \text{ fm}/c \Rightarrow \gamma \sim \begin{cases} 10^{-1} (m = \Lambda_{\text{QCD}}) \\ 10^{-4} (m = m_e) \end{cases}$, $\nu \sim 10 \\ (\sqrt{s_{NN}} = 0(1 - 10 \text{ GeV})) \end{cases}$

Development 2/5: Importance of pert pair production

✓ Schwinger formula is inapplicable for fast E fields

Slow \Rightarrow Non-pert \Rightarrow Strong exp suppression $N \sim \exp[-m^2/eE_0]$

Fast \Rightarrow Pert \Rightarrow Weak power suppression $N \sim (eE_0/m^2)^{2n}$

 \Rightarrow (So long as $e_{E_0 \leq m^2}$) Fast E creates more particles than slow E does

Development 2/5: Importance of pert pair production

✓ Schwinger formula is inapplicable for fast E fields

Slow \Rightarrow Non-pert \Rightarrow Strong exp suppression $N \sim \exp[-m^2/eE_0]$

Fast \Rightarrow Pert \Rightarrow Weak power suppression $N \sim (eE_0/m^2)^{2n}$

 \Rightarrow (So long as $eE_{0 \leq} m^2$) Fast E creates more particles than slow E does

Demonstration:

Pair prod from pulsed E field w/lifetime $\tau = 1/\Omega$ (Sauter field $eE(t) = \frac{eE_0}{\cosh^2(\Omega t)}$)

[<u>HT</u>, Fujiii, Itakura (2014)] [<u>HT</u>, Fujimori, Misumi, Nitta, Sakai (2020)]

Development 2/5: Importance of pert pair production

✓ Schwinger formula is inapplicable for fast E fields

Slow \Rightarrow Non-pert \Rightarrow Strong exp suppression $N \sim \exp[-m^2/eE_0]$

Fast \Rightarrow Pert \Rightarrow Weak power suppression $N \sim (eE_0/m^2)^{2n}$

 \Rightarrow (So long as $e_{E_0 \leq m^2}$) Fast E creates more particles than slow E does

 $eE_{0}/m^{2} = 0.1$

✓ Some application to actual physical problems

- Enhancement of heavy quark prod in heavy-ion collisions [Levai, Skokov (2010)]
- Use of fast fields to enhance the Schwinger effect in weak-field exp. (e.g., laser)
 ⇒ Dynamically assisted Schwinger effect (next slide)

Development 3/5: Dynamically assisted Schwinger effect (1/2)

[Dunne, Gies, Schutzhold (2008), (2009)]

✓ Significant enhancement of the Schwinger effect by superimposing fast (weak) E fields

 $N \sim \exp[-\# \times (\text{gap height}) \times (\text{gap length})] \Rightarrow$ Enhancement of pair prod

Development 3/5: Dynamically assisted Schwinger effect (1/2)

✓ Physics outcome

- Expected: Huge enhancement, even for very weak fast field
- Un-expected: Oscillating behavior above the mass gap

← Related to the Dirac-sea structure in strong E field (next slide)

Technical advancement

[<u>HT</u>, (2019)] [Huang, <u>HT</u>, (2019)]

• Dressed scattering theory w/ unstable vacuum

≈ Expand w/ fast field, while keeping slow field exactly

Development 4/5: Modified Dirac-sea structure by E field (1/2)

: The spectrum of the dynamically-assisted Schwinger effect reflects the modified Dirac-sea structure in strong E field

06 08 10

2.×10⁻ 0.00000

: The spectrum of the dynamically-assisted Schwinger effect reflects the modified Dirac-sea structure in strong E field

∴ The spectrum of the dynamically-assisted Schwinger effect reflects the modified Dirac-sea structure in strong E field

: The spectrum of the dynamically-assisted Schwinger effect reflects the modified Dirac-sea structure in strong E field

cf. similar argument in Franz-Keldysh effect in semi-conductor

: The spectrum of the dynamically-assisted Schwinger effect reflects the modified Dirac-sea structure in strong E field

cf. similar argument in Franz-Keldysh effect in semi-conductor

: The spectrum of the dynamically-assisted Schwinger effect reflects the modified Dirac-sea structure in strong E field

The modified Dirac-sea struc affects everything

∵ Any process occurs on top of the vacuum

Larger electron density \Rightarrow affects more

The modified Dirac-sea struc affects everything

∵ Any process occurs on top of the vacuum

Larger electron density \Rightarrow affects more

Example: Photon birefringence (electric permittivity) in strong E field

 \Rightarrow Characteristic oscillation, as expected from the modified Dirac-sea structure !

1. Overview of strong-field physics

[Fedotov, Ilderton, Karbstein, King, Seipt, <u>HT</u>, Torgrimsson, 2203.00019]

2. Recent development of the Schwinger effect

• focus on the Schwinger effect with time-dependent E fields

[<u>HT</u>, Itakura, Fujii, 1405.6182] [<u>HT</u>, 1812.03630] [<u>HT</u>, Fujimori, Misumi, Nitta, Sakai, 2010.16080] [<u>HT</u>, Ironside, 2308.11248] [<u>HT</u>, Nishimura, Ohnishi, 2402.17136]

3. An application of the Schwinger effect to QCD: the early-time dynamics of heavy-ion collisions

• Quark production is very fast ! [HT, 1609.06189] [HT, Ph. D thesis]

✓ 🗖 & 📕 are well understood

🗸 🗖 & 📕 are well understood

🗸 📕 is less understood

cf. the weak-coupling kinetic picture from Heidelberg group

\Rightarrow Formation dynamics of QGP is still an open issue

- How are the huge number of quarks & gluons produced dN/dy=O(1000)?
- How do they thermalize (hydrodynamize) to form the liquid-like QGP?
- How to explain the "early thermalization" O(1fm/c), indicated by exp data?

Not only important for completing our spacetime picture of HIC but also for deepening our understanding of QGP

(e.g.: provide the initial cond. for hydro sim. \Rightarrow better determination of QGP properties)

Strong color EM field (glasma) (1/2)

Low-Nussinov model: Low, Nussinov, Casher, Neuberger (1970~80) **Glasma**: McLerran, Lappi, Kovner, Weigert (~2005)

✓ The key: Decay of the strong color EM field into particles

⇒ Schwinger effect ! [Kerman, Matsui, Gatoff (1987)]

Strong color EM field (glasma) (1/2)

Low-Nussinov model: Low, Nussinov, Casher, Neuberger (1970~80) **Glasma**: McLerran, Lappi, Kovner, Weigert (~2005)

✓ The key: Decay of the strong color EM field into particles

⇒ Schwinger effect ! [Kerman, Matsui, Gatoff (1987)]

Strong color EM field (glasma) (2/2)

Low-Nussinov model: Low, Nussinov, Casher, Neuberger (1970~80) **Glasma**: McLerran, Lappi, Kovner, Weigert (~2005)

✓ The key: Decay of the strong color EM field into particles

⇒ Schwinger effect ! [Kerman, Matsui, Gatoff (1987)]

<u>What I am going to do</u>

✓ Purpose:

Study the quark & gluon production in the early-time dynamics of HIC by applying the Schwinger-effect realtime technique developed in QED to QCD

✓ Setup:

- QCD with Nc=3 and Nf=6 (with actual quark masses)
- Boost-invariantly expanding color E field $E(\tau, \eta, x_{\perp}) = E(\tau)$
- Neglect color magnetic field
 (← problem due to gluon instability)
- Solve QCD within mean-field approx. (next slides)

QED: [Kluger, Eisenberg, Svetitsky, Cooper, Mottola (~1990)] [Tanji (2008)]

Same as: Bogoliubov-de Gennes (TD-BdG) in cond-mat

 $L_{\rm QCD} = -\frac{1}{2} \operatorname{tr} \left[F^{\mu\nu} F_{\mu\nu} \right] + L_{\rm quark} + L_{\rm FP+GF}$

QED: [Kluger, Eisenberg, Svetitsky, Cooper, Mottola (~1990)] [Tanji (2008)]

Same as: Bogoliubov-de Gennes (TD-BdG) in cond-mat

$$L_{\rm QCD} = -\frac{1}{2} \operatorname{tr} \left[F^{\mu\nu} F_{\mu\nu} \right] + L_{\rm quark} + L_{\rm FP+GF}$$

QED: [Kluger, Eisenberg, Svetitsky, Cooper, Mottola (~1990)] [Tanji (2008)]

Same as: Bogoliubov-de Gennes (TD-BdG) in cond-mat

- **<u>STEP 1</u>** Split the total gauge field *A* into classical (strong) part $\overline{A} = \langle A \rangle$ and quantum fluctuation on top of it *a*, i.e., $A = \overline{A} + a$
- **<u>STEP 2</u>** Expand L_{QCD} i.t.o *a*

<u>STEP 1</u> Split the total gauge field *A* into classical (strong) part $\overline{A} = \langle A \rangle$ and quantum fluctuation on top of it *a*, i.e., $A = \overline{A} + a$

 $L_{\rm QCD} = -\frac{1}{2} \operatorname{tr} \left[F^{\mu\nu} F_{\mu\nu} \right] + L_{\rm quark} + L_{\rm FP+GF}$

QED: [Kluger, Eisenberg, Svetitsky, Cooper, Mottola (~1990)] [Tanji (2008)]

Same as: Bogoliubov-de Gennes (TD-BdG) in cond-mat

<u>STEP 1</u> Split the total gauge field *A* into classical (strong) part $\overline{A} = \langle A \rangle$ and quantum fluctuation on top of it *a*, i.e., $A = \overline{A} + a$

 $L_{\rm QCD} = -\frac{1}{2} \operatorname{tr} \left[F^{\mu\nu} F_{\mu\nu} \right] + L_{\rm quark} + L_{\rm FP+GF}$

 $L_{QCD} = (up to the second orer in a)$

<u>STEP 4</u> Get equation of motion

QED: [Kluger, Eisenberg, Svetitsky, Cooper, Mottola (~1990)] [Tanji (2008)]

Same as: Bogoliubov-de Gennes (TD-BdG) in cond-mat

Coupled linear EoMs

EoM for quantum fluct. *a*

 $0 = [(\partial + ig\bar{A})^2 g^{\mu\nu} + \langle M^{\mu\nu} \rangle] a_{\nu}$

EoM for classical field \overline{F}

$$\langle j^{\mu} \rangle = \partial_{\nu} [\bar{F}^{\nu \mu} + \langle f^{\nu \mu} \rangle]$$

<u>STEP 4</u> Get equation of motion

Coupled linear EoMs

EoM for quantum fluct. *a*

$$0 = [(\partial + ig\bar{A})^2 g^{\mu\nu} + \langle M^{\mu\nu} \rangle] a_{\nu}$$

Multiple scattering b/w \overline{A} and a \Rightarrow **Particle production of** *a* **from** \overline{A}

$$\mathbf{M} = \mathbf{M} + \mathbf{M} + \mathbf{M} + \mathbf{M}$$

QED: [Kluger, Eisenberg, Svetitsky, Cooper, Mottola (~1990)] [Tanji (2008)]

Same as: Bogoliubov-de Gennes (TD-BdG) in cond-mat

$$\langle j^{\mu} \rangle = \partial_{\nu} [\bar{F}^{\nu \mu} + \langle f^{\nu \mu} \rangle]$$

Current $\langle j^{\mu} \rangle$ produced by *a* screens out \overline{F} \Rightarrow **Backreaction to** \overline{F} **by** *a*

<u>STEP 4</u> Get equation of motion

QED: [Kluger, Eisenberg, Svetitsky, Cooper, Mottola (~1990)] [Tanji (2008)]

Same as: Bogoliubov-de Gennes (TD-BdG) in cond-mat

Coupled linear EoMs

STEP 5 Solve EoM !

(1) assume $O(a^2)$ terms ($M^{\mu\nu}$ and j^{μ}) are negligible (\approx no backreaction) \Rightarrow analytically solvable \Rightarrow gives essentially the same to the Schwinger formula

(2) don't neglect $O(a^2)$ terms (\approx w/ backreaction) \Rightarrow numerically doable (\Rightarrow this talk)

Results

Results (1/4): Energy balance

Time τ GeV⁻¹

✓ Due to the particle prod (+ the Bjorken exp), the initial classical field decays into quark & gluon particles rapidly $\tau \sim 10 \text{ GeV}^{-1} \sim 2 \text{ fm}/c$

cf. Non-expanding QED: [Kluger et al. (~1990)] [Tanji (2008)]

✓ Decay with oscillation (plasma oscillation)

 $\therefore \dot{E} = -J \propto$ (particles' velocity), but particles do not stop immediately at E = 0

Results (2/4): (longitudinal) **momentum dist. dN/dp** (longitudinal) momentum dist $rac{{ m d}^6 N}{{ m d} x_T^2 { m d} \eta ~ { m d} p_T^2 { m d} p_\eta}$ at $p_T \sim 0$ Quark <u>Gluon</u> 654321 $\int_{-1.5}^{0} \frac{1}{-1.5} = 1 - 0.5 = 0 \quad 0.5 = 1 \quad 1.5 = 2 \quad 0$ 30 30 25 25 20 15 -1.5 -1 -0.5 0 0.5 1 1.5 2 015 10 10 long momentum p_ŋ GeV 5

Plasma oscillation = particles are going back and forth

- \checkmark When comes back to p=0, where new particles are being produced, quantum interference occurs (known as stuckelberg interference in cond-mat)
 - gluon: Bose enhancement \Rightarrow increase of the production
 - quark: Pauli blocking \Rightarrow saturation behavior

5

Results (3/4): yields N per unit rapidity

✓ A huge number of particles O(1000) can actually be produced at early time τ=O(1fm/c)

- ⇒ Strong-field physics (= decay of strong field into particles) actually plays an important role in the early-stage dynamics of HIC
- ✓ Quark production is fast and abundant
 - \Rightarrow Quark DoG is non-negligible
 - should affect the early-stage dynamics ...
 - good news for CME search (\because U(1) B field decays very rapidly)

Results (4/4): anisotropy as a measure of thermalization

✓ Even within mean-field approx. (i.e., no interaction), anisotropy gets relaxed significantly $(P_T/P_L \sim 0.5)$

(\therefore non-zero long pressure due to acceleration by E field \Rightarrow don't simply go to the free streaming $P_L = 0$)

 Outlook: Need to go beyond mean-field approx. to really discuss thermalization (hydrodynamization)

(cf. go beyond MFA is new not only in QCD but also in QED, so should be interesting ...)

1. Overview of strong-field physics

[Fedotov, Ilderton, Karbstein, King, Seipt, <u>HT</u>, Torgrimsson, 2203.00019]

2. Recent development of the Schwinger effect

• focus on the Schwinger effect with time-dependent E fields

[<u>HT</u>, Itakura, Fujii, 1405.6182] [<u>HT</u>, 1812.03630] [<u>HT</u>, Fujimori, Misumi, Nitta, Sakai, 2010.16080] [<u>HT</u>, Ironside, 2308.11248] [<u>HT</u>, Nishimura, Ohnishi, 2402.17136]

3. An application of the Schwinger effect to QCD: the early-time dynamics of heavy-ion collisions

• Quark production is very fast ! [HT, 1609.06189] [HT, Ph. D thesis]

Today's talk

Q: What happens if we make light (or "field" in general) stronger and stronger?

<u>Purpose</u>: Review physics of such strong field

Take-home messages:

- (1) Once *eE* > (typical energy scale), sthg extremely non-trivial occur (e.g., Schwinger effect ≈ "something" from "nothing")
- (2) Such strong fields are now (or soon will be) within the exp. reach
- (3) Of relevance to hadron/QCD physics, in particular, heavy-ion collisions

FIG. 4. Sensitivity plot for nonperturbativity of the produced electric field in intermediate-energy heavy-ion collisions. The dots represent the characteristics of the field $(\tau, \max\sqrt{eE_{\rm eff}})$ extracted from Fig. 3 at each collision energy $\sqrt{s_{\rm NN}}$, ranging from $\sqrt{s_{\rm NN}} = 2.4$ GeV (blue), 3.0, 3.5, 3.9, 4.5, 5.2, 6.2, 7.2, 7.7, 9.2, to 11.5 GeV (red). The lines represent the nonperturbativity parameters (1): $1 = \xi(10 \text{ MeV})$ (bottom blue dashed), $1 = \xi(10^2 \text{ MeV})$ (middle blue dashed), $1 = \xi(10^3 \text{ MeV})$ (top blue dashed), and $1 = \nu$ (red). Those lines set "phase boundaries" of the nonperturbativity (of the vacuum pair production). The red regions $\xi(m), \nu > 1$ are nonperturbative (for mass scales m), while it is perturbative in the blue regions $\xi(m), \nu < 1$.