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Purpose: Review physics of such strong field

Take-home messages:

(1) Once eE > (typical energy scale), sthg extremely non-trivial occur
(e.g., Schwinger effect = “something” from “nothing”)

(2) Such strong fields are now (or soon will be) within the exp. reach

(3) Of relevance to hadron/QCD physics, in particular, heavy-ion collisions
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What if field becomes strong ?

No field jeld (eE,eB/m? « 1) Strong field (eE,eB/m? > 1)

Only minor changes
= Perturbative

= Very well understood
in both exp.& theor.
ex.) Electron (anomalous) magnetic moment a := %
= Electron energy shift in a weak magnetic field

a(theor.) = 1159652182.03 ...x 10~1?
a(exp.) = 1159652180.73...x 10712 [Aoyama, Kinoshita, Nio (2017)]



What if field becomes strong ?

>
time evol.
No field ield (eE,eB/m?* «< 1) Strong field (eE, eB/m? > 1)
Only minor changes Big change !
= Perturbative = Non-Perturbative
= Very well understood = Not understood well

in both exp.& theor.
g—2

ex.) Electron (anomalous) magnetic moment a := ry
= Electron energy shift in a weak magnetic field

a(theor.) = 1159652182.03 ...x 10~1?
a(exp.) = 1159652180.73...x 10712 [Aoyama, Kinoshita, Nio (2017)]

If field becomes strong, physics becomes totally different & nontrivial




Novel processes with strong fields
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v In hadron phys. / QCD (for eE,eB / Njcp > 1) [HT , Hongo, lkeda (2021)]

Ex 1 hadron properties

= mass, form factor,
nuclear force, ... 4
[Miura, Hongo, HT (in prep.)]
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Ex 2 QCD phase diagram

= (inverse-)catalysis of chiral condensate, T [MeV] 4 _
1607 [D’Elia et al. (2022)]
order of phase trans., novel phase, ... &
EX 3 Realtime dynamics 98T "G T4(Bp) ) Deconfined phase
Confined phase A
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= Anomalous transports, spin polarization, |
early-stage dynamics of HIC (QGP formation), ...
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4 9 eB.(~ 18 GeV??)
eB [GeV?)

v In other systems: Gravity, Curved spacetime, Inflaton, Cond-mat analog, ...

However, extremely strong fields needed
= Experimentally impossible in the 20t" century

eEGuiness = (1 kev)z
K me,AQCD
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A bit more on heavy-ion collisions

Low-energy (/syy = 2 — 10) HIC is interesting among other strong-field systems
- Sales points: (1) the only system that has supercritical F:= E?—~B? > 0, G:= E-B# 0
(2) sufficiently long lived = will discuss later

high-power laser magnetar High-energy HIC Low-energy HIC
FieldprofileE(usually)F=G=O F<0,G=0 F<0,G=0 F>0G+#0
strength | subcritical supercritical far-supercritical supercritical
lifetime ! super-long super-long super-short long
- Numerical estimation of the EM profile in low-energy HIC (with JAM) @ /sy = 5.2 GeV
t=0.5fm/c at 2= 0.0 fm 1=0.5 fm/c at 2=0.0 fm t=0.5 fm/c at 2= 0.0 fm .
SFMeV?
E.B< ~ L T T T T T T T ] b T T T T T ] < T T T T T T ] 404
0 m 10 - 5 10 = b 10 - = A
| s L | s L | L | 20
W ool | -] i 1
il - M I
-1|5 -1lo : ; l< 1|o ll\Sfm -:5 .110 Is i, l; ,lo llﬁm _1|s -;o I< (I> : 1Io }iffm E
g >
Impact para. 7 b=0fm 3fm 6 fm
m 10 : : l:) : : 1;) = ] 20+
o I =) 1 =°7 ] 0
[ e - I
° > 10 20
E B 0 U I L | L S Oy | T ] -40%
[HT, Nishimura, Ohnishi (2024)] [HT (in prep)] s e pe o s SEEUSRURREREE

I'm interested in this and wanna study this further )
= Chiral XXX ? Axion electrodynamics? Novel QCD phase? Let’s discuss if interested ©
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Novel processes with strong fields

Ex1 Schwinger effect
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[Sauter (1932)]

Basic of the Schwinger effect ...~

v Vacuum pair production by quantum tunneling in electric field

positive energy states

gap I~2m
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Basic of the Schwinger effect

v Vacuum pair production by quantum tunneling in electric field

positive energy states

gap I~2m
00CFT 2259200

Dirac sea

L,

Energy

Why important/interesting ?

« Vacuum process
= Fundamental, since all the physical processes occur on top of vacuum

* Non-perturbative
= Interesting, since it is the unexplored region of QFT

* Interdisciplinarity

= Similar phenomena appear in many other areas of physics
e.g., Landau-Zener effect, Hawking radiation, broad resonance, ...



[Sauter (1932)]

Basic of the Schwinger effect ...~

v Vacuum pair production by quantum tunneling in electric field

positive energy states

gap I~2m
00CFT 2259200

Dirac sea

Ener
& .."""'.

L,

Well understood (only) for a constant E field (+ many assump.: weak coup., no backreac, ...)

] (eE)?VT m? _
Schwinger formula: N, : = NeTSER X exp |~ exp[—# X (gap height) X (gap length)]

[Schwinger (1951)] [Nikishov (1969)]

« Simple theory: Calculate scattering amplitude for |0;in) — |e”e™; out)

= Evaluate < w/ a dressed wavefunc (or propagator) ;: =t = éé é
[Furry (1951)]

= Sufficient to solve Dirac eq. w/ strong-field (classical c-number) potential: [i0 — eA — m]y

* Notice the strong exp suppression = the reason why Schwinger has never been verified in experiments

cf.) Guinness world record: eE = (1 keV)? « m2 = 0(1 MeV)?
[Yanovsky et al (2008)]



Open problems
Strong-field guys are trying to go beyond the Schwinger formula

v Relax the strong assumptions of the Schwinger formula
- to find a formula applicable to realistic situations

- to find something new/interesting
(not a splitting hair but rich physics appears beyond the Schwinger formula!)
v Examples

- Beyond the constant-E-field approximation
- Beyond the no-backreaction approximation
- Beyond the weak-coupling limit

« Observables other than N ?

Review: [Fedotov, llderton, Karbstein, King, Seipt, HT, Torgrimsson, 2203.00019]
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What happens E field
IS not constant in time ?



No Schwinger effect for “fast” E fields

v Time-dependent E field with strength eE, & frequency Q (or lifetime 7 = 1/Q)



No Schwinger effect for “fast” E fields

v Time-dependent E field with strength eE, & frequency Q (or lifetime 7 = 1/Q)

Slow = small Q
= Non-pert. tunneling N~ exp[#/eE,]

Tunneling time At ~ 2

eEqy
= E field must be slower than At
=0tz At
At om [Keldysh (1965)]

=1z i =V (Keldysh parameter)
0



No Schwinger effect for “fast” E fields

v Time-dependent E field with strength eE, & frequency Q (or lifetime 7 = 1/Q)

Slow = small Q Fast = large Q
= Non-pert. tunneling N~ exp[#/eE] = Pert. photon scattering N~eEZ"
X
N Qi I -
()
000 000000
0000000000
Tunneling time At ~2?m
¢Eo = Incoherent photons, rather than
= E field must be slower than At coherent E field
= -1 2 .
{2 At = pair prod. when nQl > 2m
At am [Keldysh (1965)]
> ==
=1z 01 em = ¥ (Keldysh parameter)

= QED version of the photoelectric effect in material

— oY




Development 1/5: A better understanding of
non-pert Schwinger vs pert pair prod

v “Phase diagram” of the Schwinger effect

. . S S
Theory: (1) Semi-classical approx. N = Z Ny e ™ = (No; + O(R)) e 7 + 0(e™ 1)
= Trans-series expansion in A mm [Brezin, Itzykson (1970)] [Popov (1972)]
. [Berry (1989)] [Dunne, Shubert (2005)]
(2) Compare with exactly solvable cases ;¢ i jakura 2014y [HT Fuiimori, Misumi, Nitta, Sakai (2020)
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non-pert Schwinger vs pert pair prod
v “Phase diagram” of the Schwinger effect

. . S S 25
Theory: (1) Semi-classical approx. N = Z Ny e ™ = (No; + O(R)) e 7 + 0(e™ 1)
= Trans-series expansion in A mm [Brezin, Itzykson (1970)] [Popov (1972)]
. [Berry (1989)] [Dunne, Shubert (2005)]
(2) Compare with exactly solvable cases ;¢ i jakura 2014y [HT Fuiimori, Misumi, Nitta, Sakai (2020)

+ Two dim-less params control the interplay

. . . LA | | I"Iear‘ ! T 0
< 3 dimensionfull params in the system: eE, 7 :=1/Q,m ' \ Non-pert.
10° \ 1
y = m—}? : Keldysh parameter § i \\
€ 1000+ 1
eEt (Work done by field) g \\ 9=
V=—{0*<= = (number of photons) 8 \ -t
(One photon energy) 2 ol N
. . =]
Non-pert Schwingerify <« 1,v > 1 Pert. 3
. . . 0.1+ H
Pert pair productionify » 1,v « 1 (LOIs enough) \

10-5 0.001 0.100 10

lifetime m7



Development 1/5: A better understanding of

non-pert Schwinger vs pert pair prod
v “Phase diagram” of the Schwinger effect

Theory: (1) Semi-classical approx.
= Trans-series expansion in A

S S 28
N = Nypmh"e ™8 = (No,; +0(h)) e T + 0 1)

nm [Brezin, Itzykson (1970)] [Popov (1972)]
. [Berry (1989)] [Dunne, Shubert (2005)]
(2) Compare with exactly solvable cases ;¢ i jakura 2014y [HT Fuiimori, Misumi, Nitta, Sakai (2020)

+ Two dim-less params control the interplay

< 3 dimensionfull params in the system: eE, 7 == 1/Q,m Non-pert.
10° Low-energy
y = ma -, Keldysh parameter A3
eE e 1000
eET (Work done by field) ﬁ)
V== = (number of photons) 2
(One photon energy) § 10l
* Non-pert Schwingerify « 1,v > 1 =
. . . 0.1+ H
Pert pair productionify » 1,v « 1 (LOIs enough)

. ‘ ‘ \
10-5 0.001 0.100 10

lifetime m7

Implication: “Strong field = Non-pert strong-field physics” is necessarily correct

= Not only strength but also lifetime (& other dimful params, if any) is important

. . 2 10_3 (m = AQCD)
e.g., High-energy HIC is not non-pert.:. eF ~ (1 GeV)*, 7~ 0.1fm/c =y ~ ,v~0.1

_5 _
(vSnw > 0(100 GeV — 1 TeV)) 107> (m = m,)

. 1071 =A
Low-energy HIC is non-pert.: eF ~ (100 MeV)2 , 7 ~ 10 fm/c =y ~ { (m = Aqco) v ~ 10

107 (m=mg)
(v/syv = 0(1 — 10 GeV)) [HT, Nishimura, Ohnishi, (2024)]



Development 2/5: Importance of pert pair production

v Schwinger formula is inapplicable for fast E fields
Slow = Non-pert = Strong exp suppression N~ exp[— m?/eE,]

Fast = Pert = Weak power suppression N~(eE,/m?)*"
= (solongas e£,< m?) Fast E creates more particles than slow E does
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v Schwinger formula is inapplicable for fast E fields
Slow = Non-pert = Strong exp suppression N~ exp[— m?/eE,]

Fast = Pert = Weak power suppression N~(eE,/m?)*"

= (solongas e£,< m?) Fast E creates more particles than slow E does
eEO/m = 0.1

Demonstration: i B @,

(»=1)

0.0011 (y=1)

Pair prod from pulsed E field
w/lifetimet =1/0Q
eE, )

(Sauter field eE(t) = m

[HT, Fujiii, Itakura (2014)] i : Schwinger _
[HT, Fujimori, Misumi, Nitta, Sakai (2020)] f LO pert (one-photon) ——— |

Exact

Ll
0.01

Q/m
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Pair prod from pulsed E field
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eE, )

(Sauter field eE(t) = m

[HT, Fujiii, Itakura (2014)] i : Schwinger _
[HT, Fujimori, Misumi, Nitta, Sakai (2020)] f LO pert (one-photon) ——— |

Exact

Q/m

v Some application to actual physical problems

- Enhancement of heavy quark prod in heavy-ion collisions | ... scokov 2010y
- Use of fast fields to enhance the Schwinger effect in weak-field exp. (e.g., laser)

= Dynamically assisted Schwinger effect (nextslide)



Development 3/5: Dynamically assisted Schwinger effect (12

[Dunne, Gies, Schutzhold (2008), (2009)]

v Significant enhancement of the Schwinger effect
by superimposing fast (weak) E fields

Perturbative scattering
.\\ e
o0 R
PO . reis 2
0000\ \
o

N ~ exp[—# X (gap height) X (gap length)] = Enhancement of pair prod

\ o/

Reduced by the pert scattering



Development 3/5: Dynamically assisted Schwinger effect (12

(old theory in 2010)  Exact numerics (NEW theory)
. . Semi-classical approx Furry-picture pert theory
Field config B S A
0.000014 |- ]
E=E,|1 = Q I
= + —— cos )t 0.000012 - 5
° 100 _ _ |
", 0.000010 Schwinger formula 1
[ = i (for corfst E)
3 = sx0°f
|:{> <
T ~
asf mo 6x10°
b = ax108F
"l eEy/m? = 0.25 2 x 108 F
0 30 20 a0 : }
0.000000 !
0 1 2 3 4 5
Q/m

v Physics outcome
- Expected: Huge enhancement, even for very weak fast field
+ Un-expected: Oscillating behavior above the mass gap

< Related to the Dirac-sea structure in strong E field (ext slide)

v Technical advancement [HT, (2019)] [Huang, HT, (2019)] N=< : —

* Dressed scattering theory w/ unstable vacuum
= Expand w/ fast field, while keeping slow field exactly




Development 4/5: Modified Dirac-sea structure by E field (12

Positive energy band

Energy

Dirac sea
L E field direction

(2ny’/¥) &N /d’p

T T T
x10
<1078
102
2% 108
1§10
%0102 04 06,08 10 12
1 2 3

.. The spectrum of the dynamically-assisted Schwinger effect

reflects the modified Dirac-sea structure in strong E field
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Positive energy band

electrons in-coming wave

Electron reflected wave

Dirac sea
L E field direction

(2ny’/¥) &N /d’p

T T T
x10
<1078
102
2% 108
1§10
%0102 04 06,08 10 12
1 2 3

.. The spectrum of the dynamically-assisted Schwinger effect

reflects the modified Dirac-sea structure in strong E field
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Positive energy band

Electron
distribution

Energy

Dirac sea
L E field direction

(2ny’/¥) &N /d’p

T T T
x10
<1078
102
2% 108
1§10
%0102 04 06,08 10 12
1 2 3

.. The spectrum of the dynamically-assisted Schwinger effect

reflects the modified Dirac-sea structure in strong E field



Development 4/5: Modified Dirac-sea structure by E field (1,2

cf. similar argument in Franz-Keldysh effect in semi-conductor

Positive energy band

Electron
distribution

Energy
Dirac sea

L, E field direction

* Tunneling = Enhancement

(2n)’/¥) &N /d’p

.. The spectrum of the dynamically-assisted Schwinger effect
reflects the modified Dirac-sea structure in strong E field



Development 4: Modified Dirac-sea structure by E field (1/2)

cf. similar argument in Franz-Keldysh effect in semi-conductor

Positive energy band

Electron
distribution

Energy

4[ Dirac sea
E field direction

* Tunneling = Enhancement

((2n)’/7) &'NJd’p

« Reflection = Oscillation i S J ffffffff ,

.. The spectrum of the dynamically-assisted Schwinger effect
reflects the modified Dirac-sea structure in strong E field



Development 4/5: Modified Dirac-sea structure by E field 2,2)

The modified Dirac-sea struc affects everything
" Any process occurs on top of the vacuum




Development 4/5: Modified Dirac-sea structure by E field 2,2)

The modified Dirac-sea struc affects everything
" Any process occurs on top of the vacuum

Example: Photon birefringence (electric permittivity) in strong E field

[HT, Ironside, (2024)]
cf. Birefringence in B field [Hattori, Itakura (2013)]

€ x cos at M,\
D=cE=n*E=0+y)éE

Imaginary part

N - --O- = ol
2 L Aq = 2 i
= 0004 = 0.000"
S o : S —
© 000 A 1 v -00027
i A A aanas Kramers-Kronig rel. :
o 0000 VA FAAAAS 2 f —0.004-
—/ L 4 —/
& [ ] W, [
E -0.002;— 2 ~0.006-
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= Characteristic oscillation, as expected from the modified Dirac-sea structure !
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v M is less understood

cf. the weak-coupling kinetic picture from Heidelberg group

= Formation dynamics of QGP is still an open issue
- How are the huge number of quarks & gluons produced dN/dy=0(1000) ?

- How do they thermalize (hydrodynamize) to form the liquid-like QGP ?
- How to explain the “early thermalization” O(1fm/c), indicated by exp data ?

v Not only important for completing our spacetime picture of HIC
but also for deepening our understanding of QGP
(e.g.: provide the initial cond. for hydro sim. = better determination of QGP properties)
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Low-Nussinov model: Low, Nussinov, Casher, Neuberger (1970~80)
Glasma: McLerran, Lappi, Kovner, Weigert (~2005)

v The key: Decay of the strong color EM field into particles

= Schwinger effect! (kerman, Matsui, Gatoff (1987

bofore coll.  coll. QGP Hadron gas

—

>0 fm/c 0 fm/c ~1 fm/c ~10 fm/c



Strong color EM field (glasma) (1.2)

Low-Nussinov model: Low, Nussinov, Casher, Neuberger (1970~80)
Glasma: McLerran, Lappi, Kovner, Weigert (~2005)

v The key: Decay of the strong color EM field into particles

= Schwinger effect! (kerman, Matsui, Gatoff (1987
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Strong color EM field (glasma) (22)

Low-Nussinov model: Low, Nussinov, Casher, Neuberger (1970~80)
Glasma: McLerran, Lappi, Kovner, Weigert (~2005)

v The key: Decay of the strong color EM field into particles

= Schwinger effect! (kerman, Matsui, Gatoff (1987)]

f

IaYaip) Lladvan ocac

1

just after a collision
R

an expanding
“color capacitor”
(0 ~ QF ~ 0(1)GeV?)

U

strong color EM field
(gE, gB = 0(1) GeV?)

— ‘
08 [Lappi (2006)] 7 |




What | am going to do

v Purpose:

Study the quark & gluon production in the early-time dynamics of HIC
by applying the Schwinger-effect realtime technique developed in QED to QCD

v Setup:
« QCD with Nc=3 and Nf=6 (with actual quark masses)
 Boost-invariantly expanding color E field E(t,n,x,) = E(7)

* Neglect color magnetic field
(< problem due to gluon instability)

+ Solve QCD within mean-field approx. (next slides)




Mean-field theory (1/2)

QED: [Kluger, Eisenberg, Svetitsky,
Cooper, Mottola (~1990)]
[Tanji (2008)]

Same as:

Bogoliubov-de Gennes (TD-BdG)
in cond-mat



Mean-field theory (1/2)

1
LQCD = - Etr[F”vF;'w] + Lquark + LFP+GF

QED: [Kluger, Eisenberg, Svetitsky,
Cooper, Mottola (~1990)]
[Tanji (2008)]

Same as:

Bogoliubov-de Gennes (TD-BdG)
in cond-mat



ED: [Kluger, Eisenberg, Svetitsky,
Mean-field theory (1/2) = o ot

[Tanji (2008)]

Same as:
Locp = — —tr[F”VEw] + Lquark *+ LFp+GF Bogoliubov-de Gennes (TD-BdG)
2 in cond-mat

STEP 1 Split the total gauge field A into classical (strong) part A = (A) and quantum
fluctuation on top of it a, i.e., A=A+ a

STEP 2 Expand Lqcp i.t.0 a

W



f. Id h 2 QED: [Kluger, Eisenberg, Svetitsky,

- Cooper, Mottola (~1990)]

Mean-field theory (1/2) oo

Same as:

Locp = — 5 tr[FPYE | + Lauark + Lep+cr Bogoliubov-de Gennes (TD-BdG)
2 in cond-mat

STEP 1 Split the total gauge field A into classical (strong) part A = (A) and quantum
fluctuation on top of it a, i.e., A=A+ a

STEP 2 Expand Lqcp i.t.0 a

1
LQCD = —Etr[F“ FMV]

+ 0(aY) + 0(a?) + g X 0(a?) + g% x0(a")

@W\
@ ® @

v ais couplted to 4 in non-perturbatively: /NVV =/ \/\/ + = +

+ Lquark +Lrp+cr



° QED: [Kluger, Eisenberg, Svetitsky,
Mean-field theory (1/2) o veroncreo
Same as:

Bogoliubov-de Gennes (TD-BdG)
in cond-mat

= (4) and quantum

1
LQCD = - Etr[F”vF/iw] + Lquark + LFP+GF

STEP 1 Split the total gauge field 4 into classical (strong) part A
fluctuation on top of it a, i.e., A=A+ a

¥ STEP 2 Expand Lqcp i.t.0 a

1
LQCD = —Etr[F“ FMV]

+ 0(ah) + 0(a?) + g X 0(a?) + g% x0(a")
@ g
ow
@ 9 g
y: NN =/ + = +

v ais couplted to 4 in non-perturbatively:

+ Lquark +Lrp+cr

STEP 3 Apply mean-field approx.
to the non-linear
terms 0(a?,a*)
aaa afaa) aaaa

‘ color current (j) (local) self-energy (1)
Lgcp = (up to the second orer in a)



° QED: [Kluger, Eisenberg, Svetitsky,
Mean-field theory (2/2)  coore omon oo
Same as:

. ) Bogoliubov-de Gennes (TD-BdG)
STEP 4 Get equation of motion in cond-mat

Coupled linear EoMs

EoM for quantum fluct. a EoM for classical field F

0=[00+igh)>g" + (M*"a, () = 9y [FV* + (f V)]



° QED: [Kluger, Eisenberg, Svetitsky,
Mean-field theory (2/2) =~ coe vecoiieon

STEP 4 Get equation of motion
v
Coupled linear EoMs

EoM for quantum fluct. a

0 = [(d +|igA)?g* + (MHV)]a,,

Multiple scattering b/w A and a
= Particle production of a from 4

[Tanji (2008)]
Same as:

Bogoliubov-de Gennes (TD-BdG)
in cond-mat

EoM for classical field F

= 3,[F + (F7)]

Current (j#) produced by a screens out F
= Backreaction to F by a




° QED: [Kluger, Eisenberg, Svetitsky,
Mean-field theory (2/2)  coore omon oo
Same as:

. ) Bogoliubov-de Gennes (TD-BdG)
STEP 4 Get equation of motion in cond-mat

R 4

Coupled linear EoMs

EoM for quantum fluct. a EoM for classical field F

0 = [(Zg”" + (M*)]a, = 0, [F"# + (/)]

Multiple scattering b/w A and a

= Particle production of a from 4 Current (j#) produced by a screens out F

= Backreaction to F by a
NN = N\ + + T

STEP 5 Solve EoM !

R 4

(1) assume 0(a?) terms (M*¥ and j#) are negligible (= no backreaction)
= analytically solvable = gives essentially the same to the Schwinger formula

(2) don't neglect 0(a*) terms (= w/ backreaction) = numerically doable (= this talk)



Results



Results (1/4): Energy balance

1

Total (+H+H)
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0.1 1 10 E field (= E2/2)

Time rGev!

v Due to the particle prod (+ the Bjorken exp), the initial classical field
decays into quark & gluon particles rapidly t ~ 10 GeV~1 ~ 2 fm/c

cf. Non-expanding QED: [Kluger et al. (~1990)] [Tanji (2008)]

v Decay with oscillation (plasma oscillation)

" E = —] « (particles’ velocity), but particles do not stop immediately at E = 0



Results (2/4): gongitudina) momentum dist. dN/dp

denN
longitudinal) momentum dist atp,r-~0
(long ) dxZdn dpZdp, © T
Quark Gluon

O—=-NWLrOIO®

v Plasma oscillation = particles are going back and forth

v When comes back to p=0, where new particles are being produced,
qua ntum interference occurs (known as stuckelberg interference in cond-mat)

- gluon: Bose enhancement = increase of the production
- quark: Pauli blocking = saturation behavior



Results (3/4) ylelds N per unit rapldlty

1
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(cf. S, ~ 0(4000) GeV~2)

v A huge number of particles O(1000) can actually be produced at early time t=0(1fm/c)

= Strong-field physics (= decay of strong field into particles) actually plays
an important role in the early-stage dynamics of HIC

v Quark production is fast and abundant

= Quark DoG is non-negligible
- should affect the early-stage dynamics ...

- good news for CME search ("'

U(1) B field decays very rapidly)



Results (4/4): anisotropy as a measure of thermalization

trans pressure Py /€

o
w

long pressure P; /€

0.5

AT . 2
1 Jsicalfield| timeér Gev-l; particles

0 5 10 15 20 25 30

v Even within mean-field approx. (i.e., no interaction),
anisotropy gets relaxed significantly (,/p, ~ 0.5)
(" non-zero long pressure due to acceleration by E field = don’'t simply go to the free streaming P, = 0)

v Outlook: Need to go beyond mean-field approx. to really discuss
thermalization (hydrodynamization)

(cf. go beyond MFA is new not only in QCD but also in QED, so should be interesting ...)
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Today'’s talk

Q: What happens if we make light (or “field” in general) Stronger and stronger ?

LE Laser welding Cond.-mat Guiness record

(THz laser)

2

= :
HERCULES @ USA (2008)
I ~ 1075 W/cm? 10% W/cm? 101° W/cm? 1022 W/cm? I
4

or eE ~1071eV/cm 10%eV/cm 10°eV/cm 102 eV/cm our limit

~ (1073eV)? (107 eV)? (1 eV)? (1 keV)? at the present
—

Daily life Science

Purpose: Review physics of such strong field

Take-home messages:

(1) Once eE > (typical energy scale), sthg extremely non-trivial occur
(e.g., Schwinger effect = “something” from “nothing”)

(2) Such strong fields are now (or soon will be) within the exp. reach

(3) Of relevance to hadron/QCD physics, in particular, heavy-ion collisions







max /eL. MeV

50

7 fm/c

FIG. 4.  Sensitivity plot for nonperturbativity of the pro-
duced electric field in intermediate-energy heavy-ion colli-
sions. The dots represent the characteristics of the field
(7, max v/eFeg) extracted from Fig. 3 at each collision energy
V/snn, ranging from /sy = 2.4 GeV (blue), 3.0, 3.5, 3.9,
4.5,5.2, 6.2, 7.2, 7.7, 9.2, to 11.5 GeV (red). The lines rep-
resent the nonperturbativity parameters (1): 1 = £(10 MeV)
(bottom blue dashed), 1 = £(10* MeV) (middle blue dashed),
L = £(10* MeV) (top blue dashed), and 1 = v (red). Those
lines set “phase boundaries” of the nonperturbativity (of the
vacuum pair production). The red regions £(m),»v > 1 are
nonperturbative (for mass scales m), while it is perturbative
in the blue regions £(m), v < 1.
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