Strong-field physics in heavy-ion collisions

Hidetoshi Taya

(Keio University)

Today's talk

Q: What happens if we make light (or "field" in general) stronger and stronger ?

Today's talk

Q: What happens if we make light (or "field" in general) stronger and stronger ?

Purpose: Review physics of such strong field

Take-home messages:

- (1) Once $eE >$ (typical energy scale), sthg extremely non-trivial occur **(e.g., Schwinger effect ≈ "something" from "nothing")**
- **(2) Such strong fields are now (or soon will be) within the exp. reach**
- **(3) Of relevance to hadron/QCD physics, in particular, heavy-ion collisions**

Contents

1. Overview of strong-field physics

Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, 2203.00019]

2. Recent development of the Schwinger effect

・focus on the Schwinger effect with time-dependent E fields

[HT, Itakura, Fujii, 1405.6182] [HT, 1812.03630] [HT, Fujimori, Misumi, Nitta, Sakai, 2010.16080] [HT, Ironside, 2308.11248] [HT, Nishimura, Ohnishi, 2402.17136]

3. An application of the Schwinger effect to QCD: the early-time dynamics of heavy-ion collisions

• Quark production is very fast ! [HT, 1609.06189] [HT, Ph. D thesis (2017)]

Contents

1. Overview of strong-field physics

Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, 2203.00019]

2. Recent development of the Schwinger effect

・focus on the Schwinger effect with time-dependent E fields

[HT, Itakura, Fujii, 1405.6182] [HT, 1812.03630] [HT, Fujimori, Misumi, Nitta, Sakai, 2010.16080] [HT, Ironside, 2308.11248] [HT, Nishimura, Ohnishi, 2402.17136]

3. An application of the Schwinger effect to QCD: the early-time dynamics of heavy-ion collisions

• Quark production is very fast ! $[HT, 1609.06189] [HT, Ph. D thesis (2017)]$

No field

No field Weak field (*eE, eB/m*² \ll 1) **Strong field (***eE, eB/m***²** \gg **1)**

No field Weak field ($eE, eB/m^2 \ll 1$) **Strong field** ($eE, eB/m^2 \gg 1$)

Only minor changes

⇒ Perturbative

⇒ Very well understood in both exp.& theor.

ex.) Electron (anomalous) magnetic moment $a \coloneqq \frac{g-2}{2}$ 2

≈ Electron energy shift in a weak magnetic field

 $a(\text{exp.})\quad = 1159652180.73\,... \times 10^{-12}\quad$ [Aoyama, Kinoshita, Nio (2017)] a (theor.) = 1159652182.03 ... × 10⁻¹²

If field becomes strong, physics becomes totally different & nontrivial

Novel processes with strong fields

 ${\sf In\; QED\; (for\; eE, eB\; /\; m_e^2\; \gg 1)}$ Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, 2203.00019]Ex1 Schwinger effect Ex2 photon splitting Ex3 vacuum birefringence Ex4 high-harmonic gen. $\overline{}$ \sim In hadron phys. / QCD (for eE , $eB / \Lambda_{\rm QCD}^2 \gg 1$) let the sum of $\frac{[HI]}{[H]}$, Hongo, Ikeda (2021)] **Ex 1** hadron properties $\overline{d} \downarrow u \uparrow (\pi^+)$ · lattice (Hidaka, Yamamoto [7]) a lattice (Luschevskava et al. ISI \overline{s} ¹u^{\uparrow} (K^+) \overline{u} +s⁺ $(K^-$ ⇒ mass, form factor, \overline{d} t d t \overline{d} ⁰ \overline{s} Ld1(K⁺⁰ nuclear force, ... [HT (2015)] [Miura, Hongo, HT (in prep.)] \bar{s} ⁺ d ⁺ $(K^0$ \overline{d} tut (ρ^+) \overline{s} tut (K^{*+} \overline{u} ¹s¹(K^{*}) \overline{u} ¹d¹(ρ Ex 2 QCD phase diagram ⇒ (inverse-)catalysis of chiral condensate, T [MeV] \sim [D'Elia et al. (2022)] order of phase trans., novel phase, ... 160 Ex 3 Realtime dynamics Deconfined phase $T_E(B_E)$ Confined phase \Rightarrow Anomalous transports, spin polarization, early-stage dynamics of HIC (QGP formation), ... $eB_c (\simeq 18 \text{ GeV}^2))$

 eB [GeV²]

In other systems: Gravity, Curved spacetime, Inflaton, Cond-mat analog, ...

Novel processes with strong fields

 ${\sf In\; QED\; (for\; eE, eB\; /\; m_e^2\; \gg 1)}$

Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, 2203.00019]

Ex1 Schwinger effect Ex2 photon splitting Ex3 vacuum birefringence Ex4 high-harmonic gen.

lattice (Hidaka, Yamamoto [7]) lattice (Luschevskava et al. IS)

In hadron phys. / QCD (for eE , $eB / \Lambda_{\rm QCD}^2 \gg 1$) let the sum of $\frac{[HI]}{[H]}$, Hongo, Ikeda (2021)]

Ex 1 hadron properties ⇒ mass, form factor,

 nuclear force, ... [Miura, Hongo, HT (in prep.)]

Ex 2 QCD phase diagram

⇒ (inverse-)catalysis of chiral condensate, order of phase trans., novel phase, ...

Ex 3 Realtime dynamics

 \Rightarrow Anomalous transports, spin polarization, early-stage dynamics of HIC (QGP formation), ...

In other systems: Gravity, Curved spacetime, Inflaton, Cond-mat analog, ...

However, extremely strong fields needed

⇒ Experimentally impossible in the 20th century

Recent availability of strong EM fields

The situation changing: becoming able to create/observe strong light

∴ NOW is the BEST time to study strong-field physics

Recent availability of strong EM fields

The situation changing: becoming able to create/observe strong light

High-power laser

Extreme physical systems

・ Heavy-ion collisions

RIC (2000~), LHC (2012~), FAIR/NICA/HIAF/J-Parc-HI/… (20XX~)

 $I \sim 10^{35} \,\mathrm{W/cm^2}$ $\left| \left| \right| \right|$ (eE, eB ~ (100 MeV – 1 GeV)²)

・ Electron collider + Laser

Start soon: LUXE @ DESY, FACET-II @ SLAC

 $I \sim 10^{29} \,\mathrm{W/cm^2}$ $(eE, eB > m_e^2 \sim (1 \text{ MeV})^2)$

・ Magnetar

Suzaku (2005~2015), NICER (2017~) XL-Calibur (2018~), IXPE (2021~), …

 $I \sim 10^{29} \,\mathrm{W/cm^2}$ $(eE, eB > m_e^2 \sim (1 \text{ MeV})^2)$

∴ NOW is the BEST time to study strong-field physics

A bit more on heavy-ion collisions

Low-energy ($\sqrt{s_{NN}}$ = 2 – 10) HIC is interesting among other strong-field systems

• Sales points: (1) the only system that has supercritical $F: = E^2 - B^2 > 0$, $G := E \cdot B \neq 0$ (2) sufficiently long lived \Rightarrow will discuss later

・ Numerical estimation of the EM profile in low-energy HIC (with JAM)

I'm interested in this and wanna study this further

⇒ Chiral XXX ? Axion electrodynamics? Novel QCD phase? Let's discuss if interested [©]

Recent availability of strong EM fields

The situation changing: becoming able to create/observe strong light

High-power laser

Extreme physical systems

・ Heavy-ion collisions

RIC (2000~), LHC (2012~), FAIR/NICA/HIAF/J-Parc-HI/… (20XX~)

 $I \sim 10^{35} \,\mathrm{W/cm^2}$ $\left| \rule{0.3cm}{.0cm} \right|$ (eE, eB ~ $m_{\pi}^2 \sim (140 \text{ MeV})^2$)

・ Electron collider + Laser

Start soon: LUXE @ DESY, FACET-II @ SLAC

 $I \sim 10^{29} \,\mathrm{W/cm^2}$ $(eE, eB > m_e^2 \sim (1 \text{ MeV})^2)$

・ Magnetar

Suzaku (2005~2015), NICER (2017~) XL-Calibur (2018~), IXPE (2021~), …

 $I \sim 10^{29} \,\mathrm{W/cm^2}$ $(eE, eB > m_e^2 \sim (1 \text{ MeV})^2)$

∴ NOW is the BEST time to study strong-field physics

Novel processes with strong fields

 ${\sf In\; QED\; (for\; eE, eB\; /\; m_e^2\; \gg 1)}$

Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, 2203.00019]

[D'Elia et al. (2022)]

 $eB_c (\simeq 18 \text{ GeV}^2))$

Deconfined phase

 eB [GeV²]

 $T_E(B_E)$

Confined phase

 \bar{s} ↓u↑ (K^+) \overline{s} Ld \perp (K⁺⁰

 \overline{u} ¹s¹ (K^{*-})

Ex1 Schwinger effect Ex2 photon splitting Ex3 vacuum birefringence Ex4 high-harmonic gen.

[HT (2015)]

 \overline{u} ¹d¹(ρ ⁻

 T [MeV] 160

· lattice (Hidaka, Yamamoto [7]) lattice (Luschevskava et al. ISI

In hadron phys. / QCD (for eE , $eB / \Lambda_{\rm QCD}^2 \gg 1$) let the sum of $\frac{[HI]}{[H]}$, Hongo, Ikeda (2021)]

Ex 1 hadron properties ⇒ mass, form factor,

 nuclear force, ... [Miura, Hongo, HT (in prep.)]

Ex 2 QCD phase diagram

⇒ (inverse-)catalysis of chiral condensate, order of phase trans., novel phase, ...

Ex 3 Realtime dynamics

 \Rightarrow Anomalous transports, spin polarization, early-stage dynamics of HIC (QGP formation), ...

In other systems: Gravity, Curved spacetime, Inflaton, Cond-mat analog, ...

However, extremely strong fields needed ⇒ Experimentally impossible in the 20th century

Novel processes with strong fields

Contents

1. Overview of strong-field physics

[Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, 2203.00019]

2. Recent development of the Schwinger effect

・focus on the Schwinger effect with time-dependent E fields

[HT, Itakura, Fujii, 1405.6182] [HT, 1812.03630] [HT, Fujimori, Misumi, Nitta, Sakai, 2010.16080] [HT, Ironside, 2308.11248] [HT, Nishimura, Ohnishi, 2402.17136]

3. An application of the Schwinger effect to QCD: the early-time dynamics of heavy-ion collisions

• Quark production is very fast! [HT, 1609.06189] [HT, Ph. D thesis]

Basic of the Schwinger effect

[Sauter (1932)] [Heisenberg, Euler (1936)] [Schwinger (1951)]

Vacuum pair production by quantum tunneling in electric field

Basic of the Schwinger effect

[Sauter (1932)] [Heisenberg, Euler (1936)] [Schwinger (1951)]

Vacuum pair production by quantum tunneling in electric field

Why important/interesting ?

・ Vacuum process

 \Rightarrow Fundamental, since all the physical processes occur on top of vacuum

・ Non-perturbative

 \Rightarrow Interesting, since it is the unexplored region of QFT

- ・ Interdisciplinarity
	- \Rightarrow Similar phenomena appear in many other areas of physics e.g., Landau-Zener effect, Hawking radiation, broad resonance, ...

Basic of the Schwinger effect [Sauter (1932)]

[Sauter (1932)]

Well understood (only) for a constant E field (+ many assump.: weak coup., no backreac., ...)

Schwinger formula:
$$
N_{e^{\pm}} = \frac{(eE)^2 VT}{(2\pi)^3} \times \exp\left[-\pi \frac{m^2}{eE}\right] \sim \exp[-\# \times (\text{gap height}) \times (\text{gap length})]
$$

\n[Schwinger (1951)] [Nikishov (1969)]

• Simple theory: Calculate scattering amplitude for $|0; \text{in}\rangle \rightarrow |e^-e^+; \text{out}\rangle$

x

• Notice the strong exp suppression \Rightarrow the reason why Schwinger has never been verified in experiments \Rightarrow Evaluate \bullet \bullet w/ a dressed wavefunc (or propagator) : \Rightarrow <code>Sufficient</code> to solve Dirac eq. w/ strong-field (classical c-number) potential: $\;0=[{\rm i}\partial -eA-m]\psi$ **E … E … E … E … E** cf.) Guinness world record: $eE \approx (1 \text{ keV})^2 \ll m_e^2 = O(1 \text{ MeV})^2$ =

[Yanovsky et al (2008)]

Open problems

Strong-field guys are trying to go beyond the Schwinger formula

- \vee Relax the strong assumptions of the Schwinger formula
	- ・ to find a formula applicable to realistic situations
	- ・ to find something new/interesting (not a splitting hair but rich physics appears beyond the Schwinger formula !)

\vee Examples

- ・ Beyond the constant-E-field approximation
- ・ Beyond the no-backreaction approximation
- ・ Beyond the weak-coupling limit
- ・ Observables other than N ?

Open problems

Strong-field guys are trying to go beyond the Schwinger formula

- \vee Relax the strong assumptions of the Schwinger formula
	- ・ to find a formula applicable to realistic situations
	- ・ to find something new/interesting (not a splitting hair but rich physics appears beyond the Schwinger formula !)

\vee Examples

- ・ Beyond the constant-E-field approximation
- ・ Beyond the no-backreaction approximation
- ・ Beyond the weak-coupling limit
- ・ Observables other than N ?

What happens E field is not constant in time ?

No Schwinger effect for "fast" E fields

 \blacktriangledown Time-dependent E field with strength eE_0 & frequency Ω (or lifetime $\tau = 1/\Omega$)

No Schwinger effect for "fast" E fields

\blacktriangledown Time-dependent E field with strength eE_0 & frequency Ω (or lifetime $\tau = 1/\Omega$)

No Schwinger effect for "fast" E fields

\blacktriangledown Time-dependent E field with strength eE_0 & frequency Ω (or lifetime $\tau = 1/\Omega$)

⇒ QED version of the photoelectric effect in material

Development 1/5: A better understanding of

non-pert Schwinger vs pert pair prod

"Phase diagram" of the Schwinger effect

Development 1/5: A better understanding of

 non-pert Schwinger vs pert pair prod

"Phase diagram" of the Schwinger effect

Development 1/5: A better understanding of

non-pert Schwinger vs pert pair prod

"Phase diagram" of the Schwinger effect

 10^{-5} $(m = m_e)$, $\nu \sim 0.1$ Low-energy HIC is non-pert.: $eF \sim (100 \text{ MeV})^2$, $\tau \sim 10 \text{ fm}/c \Rightarrow \gamma \sim \begin{cases} 10^{-1} \left(m = \Lambda_\text{QCD} \right) \end{cases}$ 10^{-4} $(m = m_e)$, $\nu \sim 10$ [HT, Nishimura, Ohnishi, (2024)] $(\sqrt{s_{NN}} > 0(100 \text{ GeV} - 1 \text{ TeV}))$ $(\sqrt{s_{NN}} = 0(1 - 10 \text{ GeV}))$

Development 2/5: Importance of pert pair production

Schwinger formula is inapplicable for fast E fields

Slow \Rightarrow Non-pert \Rightarrow Strong exp suppression $N \sim \exp[-m^2/eE_0]$

Fast \Rightarrow Pert \Rightarrow Weak power suppression $N \sim (eE_0/m^2)^{2n}$

 \Rightarrow $_{($ So long as $\emph{eE}_{0}\lesssim$ m^2 $)$ <code>Fast E</code> creates more particles than slow E does

Development 2/5: Importance of pert pair production

Schwinger formula is inapplicable for fast E fields

Slow \Rightarrow Non-pert \Rightarrow Strong exp suppression $N \sim \exp[-m^2/eE_0]$

Fast \Rightarrow Pert \Rightarrow Weak power suppression $N \sim (eE_0/m^2)^{2n}$

 \Rightarrow $_{($ So long as $\emph{eE}_{0}\lesssim$ m^2 $)$ <code>Fast E</code> creates more particles than slow E does

Demonstration:

Pair prod from pulsed E field w/lifetime $τ = 1/Ω$ (Sauter field $eE(t) = \frac{eE_0}{\text{sech}^2\theta}$ $cosh²(\Omega t)$)

[HT, Fujiii, Itakura (2014)] [HT, Fujimori, Misumi, Nitta, Sakai (2020)]

Development 2/5: Importance of pert pair production

Schwinger formula is inapplicable for fast E fields

Slow \Rightarrow Non-pert \Rightarrow Strong exp suppression $N \sim \exp[-m^2/eE_0]$

Fast \Rightarrow Pert \Rightarrow Weak power suppression $N \sim (eE_0/m^2)^{2n}$

 \Rightarrow $_{($ So long as $\emph{eE}_{0}\lesssim$ m^2 $)$ <code>Fast E</code> creates more particles than slow E does

 $\Omega = \frac{1}{\sqrt{eE_0}}$ $(v=1)$ $(y=1)$ Exact Schwinger LO pert. (one-photon) 10^{-18} 0.01 0.10 10 Ω/m

Some application to actual physical problems

- Enhancement of heavy quark prod in heavy-ion collisions $_{[Levai, Skokov (2010)]}$
- \Rightarrow **Dynamically assisted Schwinger effect** (next slide) ・ Use of fast fields to enhance the Schwinger effect in weak-field exp. (e.g., laser)

 $eE_0/m^2 = 0.1$

Development 3/5: Dynamically assisted Schwinger effect (1/2)

[Dunne, Gies, Schutzhold (2008), (2009)]

◆ Significant enhancement of the Schwinger effect **by superimposing fast (weak) E fields**

Reduced by the pert scattering *N* ~ exp[-# × (gap height) × (gap length)] **⇒ Enhancement of pair prod**

Development 3/5: Dynamically assisted Schwinger effect (1/2)

Physics outcome

- ・ Expected: Huge enhancement, even for very weak fast field
- ・ Un-expected: Oscillating behavior above the mass gap

 \Leftarrow Related to the Dirac-sea structure in strong E field (next slide)

Technical advancement

[HT, (2019)] [Huang, HT, (2019)]

・ Dressed scattering theory w/ unstable vacuum

≈ Expand w/ fast field, while keeping slow field exactly

Development 4/5: Modified Dirac-sea structure by E field (1/2)

∴ The spectrum of the dynamically-assisted Schwinger effect reflects the modified Dirac-sea structure in strong E field

cf. similar argument in Franz-Keldysh effect in semi-conductor

cf. similar argument in Franz-Keldysh effect in semi-conductor

The modified Dirac-sea struc affects everything

∵ Any process occurs on top of the vacuum

The modified Dirac-sea struc affects everything

∵ Any process occurs on top of the vacuum

Larger electron density ⇒ affects more

Example: Photon birefringence (electric permittivity) in strong E field

⇒ Characteristic oscillation, as expected from the modified Dirac-sea structure !

Contents

1. Overview of strong-field physics

[Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, 2203.00019]

2. Recent development of the Schwinger effect

・focus on the Schwinger effect with time-dependent E fields

[HT, Itakura, Fujii, 1405.6182] [HT, 1812.03630] [HT, Fujimori, Misumi, Nitta, Sakai, 2010.16080] [HT, Ironside, 2308.11248] [HT, Nishimura, Ohnishi, 2402.17136]

3. An application of the Schwinger effect to QCD: the early-time dynamics of heavy-ion collisions

• Quark production is very fast! [HT, 1609.06189] [HT, Ph. D thesis]

■ & ■ are well understood

■ & ■ are well understood

■ **is less understood**

cf. the weak-coupling kinetic picture from Heidelberg group

⇒ Formation dynamics of QGP is still an open issue

- ・ How are the huge number of quarks & gluons produced dN/dy=O(1000) ?
- ・ How do they thermalize (hydrodynamize) to form the liquid-like QGP?
- How to explain the "early thermalization" O(1fm/c), indicated by exp data?

Not only important for completing our spacetime picture of HIC but also for deepening our understanding of QGP

(e.g.: provide the initial cond. for hydro sim. ⇒ better determination of QGP properties)

Strong color EM field (glasma) (1/2)

Low-Nussinov model: Low, Nussinov, Casher, Neuberger (1970~80) **Glasma**: McLerran, Lappi, Kovner, Weigert (~2005)

The key: Decay of the strong color EM field into particles

[Kerman, Matsui, Gatoff (1987)] **⇒ Schwinger effect !**

Strong color EM field (glasma) (1/2)

Low-Nussinov model: Low, Nussinov, Casher, Neuberger (1970~80) **Glasma**: McLerran, Lappi, Kovner, Weigert (~2005)

The key: Decay of the strong color EM field into particles

[Kerman, Matsui, Gatoff (1987)] **⇒ Schwinger effect !**

Strong color EM field (glasma) (2/2)

Low-Nussinov model: Low, Nussinov, Casher, Neuberger (1970~80) **Glasma**: McLerran, Lappi, Kovner, Weigert (~2005)

The key: Decay of the strong color EM field into particles

[Kerman, Matsui, Gatoff (1987)] **⇒ Schwinger effect !**

What I am going to do

Purpose:

Study the quark & gluon production in the early-time dynamics of HIC by applying the Schwinger-effect realtime technique developed in QED to QCD

Setup:

- ・ QCD with Nc=3 and Nf=6 (with actual quark masses)
- Boost-invariantly expanding color E field $E(\tau, \eta, x_{\perp}) = E(\tau)$
- ・ Neglect color magnetic field $(\Leftarrow$ problem due to gluon instability)
- ・ Solve QCD within mean-field approx. (next slides)

 Cooper, Mottola (~1990)] [Tanji (2008)]

$$
L_{\rm QCD} = -\frac{1}{2} \text{tr} \left[F^{\mu\nu} F_{\mu\nu} \right] + L_{\rm quark} + L_{\rm FP+GF}
$$

 Cooper, Mottola (~1990)] [Tanji (2008)]

$$
L_{\text{QCD}} = -\frac{1}{2} \text{tr} \big[F^{\mu\nu} F_{\mu\nu} \big] + L_{\text{quark}} + L_{\text{FP+GF}}
$$

 Cooper, Mottola (~1990)] [Tanji (2008)]

- **STEP 1** Split the total gauge field *A* into classical (strong) part $\bar{A} = \langle A \rangle$ and quantum fluctuation on top of it a, i.e., $A = \overline{A} + a$
- **STEP 2** Expand L_{QCD} i.t.o a

 Cooper, Mottola (~1990)] [Tanji (2008)]

Same as: Bogoliubov-de Gennes (TD-BdG) in cond-mat

STEP 1 Split the total gauge field A into classical (strong) part $\bar{A} = \langle A \rangle$ and quantum fluctuation on top of it a, i.e., $A = \overline{A} + a$

$$
L_{\text{QCD}} = -\frac{1}{2} \text{tr} \left[F^{\mu \nu} F_{\mu \nu} \right] + L_{\text{quark}} + L_{\text{FP+GF}}
$$

 Cooper, Mottola (~1990)] [Tanji (2008)]

Same as: Bogoliubov-de Gennes (TD-BdG) in cond-mat

STEP 1 Split the total gauge field A into classical (strong) part $\bar{A} = \langle A \rangle$ and quantum fluctuation on top of it a, i.e., $A = \overline{A} + a$

STEP 2 Expand
$$
L_{\text{QCD}}
$$
 i.t.o a

 $L_{\text{QCD}} = -$ 1 2 tr $\left[\bar{F}^{\mu\nu}\bar{F}_{\mu\nu}\right]$ + $O(a^1)$ $\theta(a^2)$ 2) $|+\, | \, g \times O(a^3)$ $|+\, | \, g$ $g^2 \times O(a^4)$ + L_{quark} + L_{FP+GF} ann anna \overline{a} $a_{\rm{on}}a$ \overline{a} \overline{a} a 4a \overline{a} aaa adaa aaaa aadaa $\boldsymbol{\checkmark}$ a is couplted to \bar{A} in non-perturbatively: $\boldsymbol{\mathcal{N}} = \triangle \vee + \triangle$ \bar{A} $\left(\bar{A}\right)\left(\bar{A}\right)$ \rightarrow \rightarrow \rightarrow color current $\langle j \rangle$ **STEP 3** Apply mean-field approx. to the non-linear terms $O(a^3, a^4)$ \overline{a} \overline{a} \boldsymbol{a} and \boldsymbol{a} \overline{a} a (a \overline{a} \overline{a} (local) self-energy $\langle M \rangle$

 $L_{\text{OCD}} = (up to the second over in a)$

STEP 4 Get equation of motion

 Cooper, Mottola (~1990)] [Tanji (2008)]

Same as: Bogoliubov-de Gennes (TD-BdG) in cond-mat

Coupled linear EoMs

EoM for quantum fluct. a

 $0 = [(\partial + ig\overline{A})^2 g^{\mu\nu} + \langle M^{\mu\nu} \rangle] a_{\nu}$ (j

EoM for classical field \bar{F}

$$
\langle j^{\mu}\rangle=\partial_{\nu}[\bar{F}^{\nu\mu}+\langle f^{\nu\mu}\rangle]
$$

STEP 4 Get equation of motion

Coupled linear EoMs

EoM for quantum fluct. a

$$
0 = [(\partial + [ig\overline{A}]^2 g^{\mu\nu} + \langle M^{\mu\nu} \rangle] a_{\nu} \qquad (j
$$

Multiple scattering b/w \bar{A} and α **⇒ Particle production of** a from \bar{A}

EoM for classical field
$$
\bar{F}
$$

$$
\overline{\langle j^{\mu} \rangle} = \partial_{\nu} [\bar{F}^{\nu \mu} + \langle f^{\nu \mu} \rangle]
$$

Current $\langle j^{\mu} \rangle$ produced by a screens out \bar{F} \Rightarrow **Backreaction to** \bar{F} by α

= \wedge \wedge + \wedge \wedge + \wedge \wedge + … \bar{A} \bar{A} \bar{A}

 Cooper, Mottola (~1990)] [Tanji (2008)]

STEP 4 Get equation of motion

Coupled linear EoMs

STEP 5 Solve EoM !

(1) assume $O(a^2)$ terms ($M^{\mu\nu}$ and j^μ) are negligible (≈ no backreaction) \Rightarrow analytically solvable \Rightarrow gives essentially the same to the Schwinger formula

(2) don't neglect $O(a^2)$ terms (≈ w/ backreaction) \Rightarrow numerically doable (\Rightarrow this talk)

 Cooper, Mottola (~1990)] [Tanji (2008)]

Results

Results (1/4): Energy balance

 $\mathsf{Time}\ \tau\ \mathrm{GeV}^{-1}$

 \vee Due to the particle prod (+ the Bjorken exp), the initial classical field decays into quark & gluon particles rapidly $\tau \sim 10$ GeV $^{-1} \sim 2$ fm/ c

cf. Non-expanding QED: [Kluger et al. (~1990)] [Tanji (2008)]

 \vee Decay with oscillation (plasma oscillation)

 \therefore $\dot{E} = -J \propto$ (particles' velocity), but particles do not stop immediately at $E = 0$

Results (2/4): (longitudinal) momentum dist. dN/dp d^6N **(longitudinal) momentum dist** at $\bm{p}_{\bm{T}} \sim \bm{0}$ d x_T^2 d η d p_T^2 d p_{η} **Quark Gluon** 654321 Plasma oscillation = particles are going back and forth 30 30 25 25 $\begin{array}{c} 20 \\ 5 \end{array}$ -1.5 -1 -0.5 0 0.5 1 1.5 2 0

 15

10

5

 \vee When comes back to p=0, where new particles are being produced, quantum interference occurs (known as stuckelberg interference in cond-mat)

 15

10

5

- ・ gluon: Bose enhancement ⇒ increase of the production
- ・ quark: Pauli blocking ⇒ saturation behavior

Results (3/4): yields N per unit rapidity

 \blacktriangleright A huge number of particles O(1000) can actually be produced at early time τ =O(1fm/c)

- ⇒ Strong-field physics (= decay of strong field into particles) actually plays
- ◆ Quark production is fast and abundant
	- ⇒ Quark DoG is non-negligible
		- ・ should affect the early-stage dynamics ...
		- ・ good news for CME search (∵ U(1) B field decays very rapidly)

Results (4/4): anisotropy as a measure of thermalization

Even within mean-field approx. (i.e., no interaction), anisotropy gets relaxed significantly $(P_T/P_L \sim 0.5)$

(∵ non-zero long pressure due to acceleration by E field \Rightarrow don't simply go to the free streaming $P_L = 0$)

 \vee Outlook: Need to go beyond mean-field approx. to really discuss thermalization (hydrodynamization) (cf. go beyond MFA is new not only in QCD but also in QED, so should be interesting ...)

Contents

1. Overview of strong-field physics

[Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, 2203.00019]

2. Recent development of the Schwinger effect

・focus on the Schwinger effect with time-dependent E fields

[HT, Itakura, Fujii, 1405.6182] [HT, 1812.03630] [HT, Fujimori, Misumi, Nitta, Sakai, 2010.16080] [HT, Ironside, 2308.11248] [HT, Nishimura, Ohnishi, 2402.17136]

3. An application of the Schwinger effect to QCD: the early-time dynamics of heavy-ion collisions

• Quark production is very fast! [HT, 1609.06189] [HT, Ph. D thesis]

Today's talk

Q: What happens if we make light (or "field" in general) stronger and stronger ?

Purpose: Review physics of such strong field

Take-home messages:

- (1) Once $eE >$ (typical energy scale), sthg extremely non-trivial occur **(e.g., Schwinger effect ≈ "something" from "nothing")**
- **(2) Such strong fields are now (or soon will be) within the exp. reach**
- **(3) Of relevance to hadron/QCD physics, in particular, heavy-ion collisions**

FIG. 4. Sensitivity plot for nonperturbativity of the produced electric field in intermediate-energy heavy-ion collisions. The dots represent the characteristics of the field $(\tau, \max \sqrt{eE_{\text{eff}}})$ extracted from Fig. 3 at each collision energy $\sqrt{s_{NN}}$, ranging from $\sqrt{s_{NN}} = 2.4$ GeV (blue), 3.0, 3.5, 3.9, 4.5, 5.2, 6.2, 7.2, 7.7, 9.2, to 11.5 GeV (red). The lines represent the nonperturbativity parameters (1): $1 = \xi(10 \text{ MeV})$ (bottom blue dashed), $1 = \xi(10^2 \text{ MeV})$ (middle blue dashed), $1 = \xi(10^3 \text{ MeV})$ (top blue dashed), and $1 = \nu$ (red). Those lines set "phase boundaries" of the nonperturbativity (of the vacuum pair production). The red regions $\xi(m), \nu > 1$ are nonperturbative (for mass scales m), while it is perturbative in the blue regions $\xi(m), \nu < 1$.