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This talk

Discuss the electric permittivity 𝝐 of the vacuum 
in a strong constant electric field

In the pure vacuum 𝒟 = ℰ In an EM field 𝒟 = 𝜖ℰ ≠ ℰ

～～ ～ ～

ഥ𝑬

・many studies since the early days, 

    but is still worthwhile to be investigated ⇒ 3 motivations

・ 𝜖 is no longer a const. 𝜖 = 𝜖( ത𝐸) due to the vacuum polarization

[Heisenberg-Euler (1936)] [Toll 1952] [Klein-Nigam (1964)] [Baier-Breitenlohner (1967)] …  
Review: [King-Heinzl (2015)] [Ejlli et al. (PVLAS) (2020)] [Fedotov et al. (2023)] …



The most famous formula = based on Euler-Heisenberg Lagrangian

𝜖 =
𝛼

45𝜋

𝑒 ത𝐸

𝑚2

2

× ቊ
6 (∥)
 2 (⊥)

𝒟 = −
𝜕ℒEH

𝜕ℰ
⇒

[Baier-Breitenlohner (1967)]

Motivations (1/3)
(1) The current understanding is limited to weak/slow regime



Q: What happens if I go beyond those limitations ?

The most famous formula = based on Euler-Heisenberg Lagrangian

𝜖 =
𝛼
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𝒟 = −
𝜕ℒEH
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[Baier-Breitenlohner (1967)]

Motivations (1/3)
(1) The current understanding is limited to weak/slow regime

Problem 1: Valid only in the weak limit 𝒆ഥ𝑬 ≪ 𝒎𝟐

power corrections could be included 𝑒 ത𝐸 𝑛, but

・is factorially divergent ⇒ does not necessarily improve the formula

・non-pert. factor like 𝑒1/𝑒 ത𝐸 can never be included
cf. [Heinzl-Schroder (2006)]

Problem 2: Valid only in the slow limit 𝝎 ≪ 𝒎

・not possible to discuss 𝜔 dependence

・the physics must be different above the pair-production threshold 𝜔 > 2𝑚

Problem 3: Neglecting the imaginary part 𝐈𝐦 𝓛𝐄𝐇

𝜖 (in the coordinate space) must be real, so one must set Im ℒEuler−Heisenberg 

⇒ pair production and “non-equilibrium-ness” of E field are completely dismissed

cf. [King-Heinzl-Blackburn (2023)]



(2) As a signature of non-trivial QED vacuum structure in E field

Motivations (2/3)

← Dirac sea

← positive energy states

← mass gap ~ 2m 

QED vacuum at ഥ𝑬 = 𝟎 

The QED vacuum (= the Dirac sea) has a non-trivial electron dist. in an E field, 

which can leave observable imprints 
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E field direction 

(2) As a signature of non-trivial QED vacuum structure in E field

Motivations (2/3)

electrons coming 

𝜓 ∝ 𝑒−i∫ d𝑧 𝑃

∝ 𝑒+i∫ d𝑧 𝑃

QED vacuum at ഥ𝑬 ≠ 𝟎 

reflected by the gap
Oscillation 

Observable imprint

The QED vacuum (= the Dirac sea) has a non-trivial electron dist. in an E field, 

which can leave observable imprints 

Ex.) spectrum of the dynamically-assisted Schwinger 
                       (= pair prod. in const ത𝐸 + fast probe ℰ)

probe frequency 𝜔/𝑚

Analytic 
(Furry picture)

Exact numerical 
results

[HT (2019)] [Huang-HT (2020)]
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E field direction 

(2) As a signature of non-trivial QED vacuum structure in E field

Motivations (2/3)

electrons coming 

𝜓 ∝ 𝑒−i∫ d𝑧 𝑃

∝ 𝑒+i∫ d𝑧 𝑃

QED vacuum at ഥ𝑬 ≠ 𝟎 

reflected by the gap
Oscillation 

Observable imprint

The QED vacuum (= the Dirac sea) has a non-trivial electron dist. in an E field, 

which can leave observable imprints 

Ex.) spectrum of the dynamically-assisted Schwinger 
                       (= pair prod. in const ത𝐸 + fast probe ℰ)

probe frequency 𝜔/𝑚

Analytic 
(Furry picture)

Exact numerical 
results

Q: What happens to the electric permittivity ?

Note: The motivation (1) (in particular, going beyond 𝜔 ≪ 𝑚) is important to achieve this 

[HT (2019)] [Huang-HT (2020)]

∝ |# 𝑒+i∫ d𝑧 𝑃 +# 𝑒−i∫ d𝑧 𝑃 ቚ
2

∝ cos ∫ d𝑧 𝑃

interfered electron distribution



(3) Pursue analogy between strong-field QED and semicond. phys

Motivations (3/3)

・ Ground-state structure of semicond.  =  The QED vacuum

     ⇒ the QED vacuum should response against external field in a similar way 
     to a semiconductor and vice versa



(3) Pursue analogy between strong-field QED and semicond. phys

Motivations (3/3)

・ Ground-state structure of semicond.  =  The QED vacuum

     

Δ
𝜖

≔
𝜖

𝑒
ത 𝐸

≠
0

−
𝜖(

𝑒
ത 𝐸

=
0

) [Yacoby (1966)] [Seraphin-Hess (1965)]

with Si

with Ge

Im
 Δ

𝜖

・ Nontrivial oscillating change in 𝜖 (i.e., motivation (2)) has already been observed 

     more than 50 yrs ago in semicond. physics ! 

     (⇒ the Franz-Keldysh effect and electroreflectance)

⇒ the QED vacuum should response against external field in a similar way 
     to a semiconductor and vice versa

probe frequency 𝜔

R
e 

Δ
𝜖

probe frequency 𝜔

Q: Natural to expect this change in QED.  Is this analogy true ?

[Franz (1958)] [Keldysh (1958)]



This talk

Discuss the electric permittivity 𝝐 of the vacuum 
in a strong constant electric field

II. Theory

III. Results

IV. Summary

Linear response theory based on in-in formalism of QFT

will give positive statements to the motivations (1) - (3)

(2) As a signature of non-trivial QED vacuum structure in E field

(3) Pursue analogy between strong-field QED and semicond. phys

(1) What happens if I go beyond weak/slow-field limit ?

I. Introduction
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Theory (1/2)
Linear response theory based on in-in formalism of QFT

Step 1: Definitions of 𝒟 and 𝜖

Setup: QED under a constant strong field ത𝐸 + a weak spatially homo. probe ℰ(𝑡) 

・ Total flux 𝐷 = 𝐸 + 𝑃( ത𝐸, ℰ) = 𝐸 + 𝑃0( ത𝐸) +𝑃1 ( ത𝐸)ℰ + ⋯

ത𝐸 + ℰ
⇒ 𝜖 = 1 +𝑃1 ( ത𝐸)= ത𝐸 + 𝑃0( ത𝐸) + (1 +𝑃1

ത𝐸 )ℰ + ⋯

𝒟



Theory (1/2)
Linear response theory based on in-in formalism of QFT

Step 1: Definitions of 𝒟 and 𝜖

Setup: QED under a constant strong field ത𝐸 + a weak spatially homo. probe ℰ(𝑡) 

・ Total flux 𝐷 = 𝐸 + 𝑃( ത𝐸, ℰ) = 𝐸 + 𝑃0( ത𝐸) +𝑃1 ( ത𝐸)ℰ + ⋯

= 0; in| ത𝜓0
ത𝐸 𝛾𝜇𝜓0( ത𝐸)|0; in

 + 0; in| ത𝜓1
ത𝐸 𝛾𝜇𝜓0

ത𝐸 + ത𝜓0
ത𝐸 𝛾𝜇𝜓1( ത𝐸)|0; in × ℰ + 𝒪(ℰ2)

ത𝐸 + ℰ
⇒ 𝜖 = 1 +𝑃1 ( ത𝐸)= ത𝐸 + 𝑃0( ത𝐸) + (1 +𝑃1

ത𝐸 )ℰ + ⋯

Step 2: Calculate 𝑃1

・Ampere law: − ሶ𝑃 = 𝐽
𝑃1

・Not in-out amplitude, but in-in !

⇒ crucial when pair creating 
     (or in non-equil.): 

cf. [Copinger-Fukushima-Shi (2018)]

ۧ|0; out = ۧ|0; in + (pair states like ۧ|𝑒+𝑒−; in )

= 0; in| ത𝜓( ത𝐸, ℰ)𝛾𝜇𝜓( ത𝐸, ℰ)|0; in

𝒟

・Diagrammatically, evaluate ～ℰ



Theory (2/2)
Detail 1: Loop diagram ⇒ UV divergent ⇒ use Kramers-Kronig relation

⇒ sufficient to calculate the imaginary part 
     (same approach has been adopted in semicond.) 

[Toll (1960)] [Heinzl, Schroeder (2006)] [Borysov et al. (2022)]

Re 𝜖(𝜔) =
1

𝜋
P. V. න

−∞

+∞

d𝜔′
1

𝜔′ − 𝜔
Im 𝜖(𝜔′)Causality ⇒

[Aspnes(1967)]

=Im

2



Theory (2/2)
Detail 1: Loop diagram ⇒ UV divergent ⇒ use Kramers-Kronig relation

⇒ sufficient to calculate the imaginary part 
     (same approach has been adopted in semicond.) 

[Toll (1960)] [Heinzl, Schroeder (2006)] [Borysov et al. (2022)]

Re 𝜖(𝜔) =
1

𝜋
P. V. න

−∞

+∞

d𝜔′
1

𝜔′ − 𝜔
Im 𝜖(𝜔′)Causality ⇒

Detail 2: Im 𝜖 is directly related to the (dynamically-assisted) Schwinger effect

・Electromagnetism tells us: 
 Im 𝜖 is related to the dielectric energy loss

d𝑈1

d𝑡
= ℰ

d𝒟

d𝑡
=

1

2
𝜔ℰ2 Im 𝜖

d𝑈2

d𝑡
= 𝜔

𝑁 ℰ ≠ 0 − 𝑁(ℰ = 0)

𝑉𝑇

・ Microscopically, the dielectric energy loss
     should be caused by the pair prod.

See, e.g., textbook by Landau-Lefshitz

・ Energy loss of probe due to the pair prod.

𝑈1 = 𝑈2  ⇒  
𝑁 ℰ≠0 −𝑁(ℰ=0)

𝑉𝑇
=

1

2
ℰ2 Im 𝜖

∴  Schwinger  𝐈𝐦 𝝐 𝐑𝐞 𝝐
KK

[Aspnes(1967)]

=Im

2

⇒ 𝝐 as an indirect sign. of Schwinger & vice versa
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Results (1/3): Imaginary part of 𝚫𝝐 

・ Oscillation, as expected from the tilted vacuum

・ Non-vanishing even at 𝜔 → 0 due to the strong-field non-perturbative effect

・ Birefringent (Im Δ𝜖∥ ≠ Im Δ𝜖⊥) but the basically the same

Strong ത𝐸 Strong ത𝐸

～～ ～
～

Imaginary part of the change 𝚫𝝐 = 𝝐 ഥ𝑬 ≠ 𝟎 − 𝝐(ഥ𝑬 = 𝟎)

Probe ℰ
Probe ℰ

・ Essentially the same pattern as semi-conductor observation 

A simple explanation: In the slow limit, the standard Schwinger formula is valid

⇒ Im 𝜖 ∝ (𝑁Schwinger
ത𝐸 + ℰ − 𝑁Schwinger

ത𝐸 ) ∝ (exp −𝜋
𝑚2

𝑒( ത𝐸+ℰ)
− exp[−𝜋

𝑚2

𝑒 ത𝐸
]) = (finite) × exp −𝜋

𝑚2

𝑒 ത𝐸



・ Oscillation, consistent with semi-conductor

・ Logarithmically divergent at 𝜔 → 0 
     due to the non-perturbative effect

Strong ത𝐸 Strong ത𝐸

～～ ～
～

Real part of the change 𝚫𝝐 = 𝝐 ഥ𝑬 ≠ 𝟎 − 𝝐(ഥ𝑬 = 𝟎)

Probe ℰ
Probe ℰ

Results (2/3): Real part of 𝚫𝝐

Re 𝜖 0 =
1

𝜋
P. V. න

−∞

+∞

d𝜔′
1

𝜔′
Im 𝜖 𝜔′

∵

∼
1

𝜋
න

−∞

+∞

d𝜔′
1

𝜔′
Im 𝜖 0 ∼ log div. ×  exp −𝜋

𝑚2

𝑒 ത𝐸



・ Significant deviation for finite 𝜔 and/or stronger ത𝐸

・ After the log subtraction, the result is consistent with the EH result 

Strong ത𝐸 Strong ത𝐸

～～ ～
～

Comparison w/ Euler-Heisenberg around 𝝎 ≈ 𝟎

Probe ℰ
Probe ℰ

Results (3/3): Comparison w/ EH

Δ𝜖EH =
𝛼

45𝜋

𝑒 ത𝐸

𝑚2

2

× ቊ
6 (∥)
 2 (⊥)
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Summary
Discussed the electric permittivity 𝝐 of the vacuum 

in a strong constant electric field

(1): Succeeded with a linear response theory based on in-in formalism

(2) As a signature of non-trivial QED vacuum structure in E field

(3) Pursue analogy between strong-field QED and semicond. phys

(1) The current understanding is limited to weak/slow regime

Three motivations and my answers to them: 

(2)&(3): Yes, a characteristic oscillating structure in 𝜖, similarly to semicond.

Other lessons (and further comments)

・Higher frequency gives a bigger signal of 𝜖 (or vacuum birefringence, in general)

e.g. peak at 𝜔 ∼ 2𝑚: ≫  Δ𝜖EH = 𝑂(10−7) for 𝐼 = 𝑂(1 × 1023 W/cm2)

(PW laser)

・ Need to go beyond EH for large 𝜔 or strong ത𝐸 ⇒ implications to heavy-ion coll., magnetar, … ?
KK

・ Schwinger  Im 𝜖 Re 𝜖 ⇒ 𝜖 as an indirect signature of Schwinger & vice versa

Motivations: 

Answers:





・much larger than EH 

   ⇒ High-frequency probe is useful to study 𝜖 (or vacuum birefringence, in general)

Numerical fit says (similar numbers for Im 𝜖⊥ and Re 𝜖∥,⊥)

Behaviors of the peaks

Peak value

・weak E dependence Δ𝜖 ∝ 𝐼
1

5
~

1

6 ⇒  the peaks of Δ𝜖 can still be large for subcritical fields 

where 𝐼 = ത𝐸2/2 is the focused intensity

e.g., Δ𝜖EH = 𝑂(10−7) for 𝐼 = 𝑂(1 × 1023 W/cm2) (PW laser)

e.g., only one-order smaller Δ𝜖 = 𝑂 1 × 10−5 ≫ Δ𝜖EH at GW scale
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