Vacuum HHG in strong-field QED

Hidetoshi Taya (Keio U.)

This talk

Discuss vacuum high-harmonic generation (HHG) in strong-field QED

Take-home messages:

- **・** Vacuum HHG surely occurs and semi-classical analysis can explain the basic features (e.g., cutoff law)
- **・** Physics: Interband current induced by the Schwinger effect and quantum interference of the Schwinger effect are the essence

NB: This work is an extension of my previous work for 2d Dirac material H_1 , Hongo, Ikeda (2021)] NB: Very preliminary, so comments/criticisms are welcome !

1. Introduction

2. Theory

- **・** Numerical simulation ⇒ observe basic features of HHG
- **・** Semi-classical analysis ⇒ reveal the origin of HHG

3. Summary

1. Introduction

2. Theory

- **・** Numerical simulation ⇒ observe basic features of HHG
- **・** Semi-classical analysis ⇒ reveal the origin of HHG

3. Summary

Introduction to HHG

Actual HHG spectrum in a solid

Originally developed in optics and solid-state physics

- **・** First observation with gas (= one-band material) in 1988
	- ⇒ Many applications: laser pointer, attosecond light source, … Nobel prize in 2023
- **・** Recent development: observation with solids (= band materials) in 2011

 \Rightarrow Key features: plateau + cutoff + discretized peaks

Very natural, if we admit the analogy b/w band-materials & QED vacuum

• Many successful analogies: Schwinger effect ↔ Landau-Zener transition Dynamically assisted Schwinger \leftrightarrow Franz-Keldysh effect Quantum interference of Schwinger \leftrightarrow Stuckelberg-phase effect ...

Not only interesting but also useful

[T. Gaumnitz et al., (2017)]

- The fastest light source of the zs (zepto second ~ 1/me) order (cf. current world record: 43 as ~ (100 eV)⁻¹)
- **・** Application to physics near/beyond the pair creation threshold (e.g., dynamically assisted Schwinger)

Previous studies

- **・** This is not the first study: [Piazza, Hatsagortsyan, Keitel (2005)], [Fedotov, Narozhny (2006)], [Bohl, King, Ruhl (2015)] …
- **・** But, previous studies are based on constant-field (low freq.) approx. (e.g., EH Lagrangian)
	- \Rightarrow Problematic, since time dependence can change physics drastically !

Sales point: Proper inclusion of the time dependence of the input driving field

1. Introduction

2. Theory

- **・** Numerical simulation ⇒ observe basic features of HHG
- **・** Semi-classical analysis ⇒ reveal the origin of HHG

3. Summary

Observable: Harmonic spectrum of the response EM field **Setup:** QED in a spatially-homogeneous AC field $\overline{E}(t) = \overline{E}_0 \cos(\Omega t)$ $\mathcal{L} = \hat{\bar{\psi}}(i\partial \!\!\!/- e\hat{\cal A} - m)\hat{\psi} - \frac{1}{4}$ $(\partial\!\!\!/-\partial\$ classical driving field \bar{A} = $\langle \bar{A} \rangle$ $\hat{A} - m\big)\hat{\psi} - \frac{1}{4}\hat{F}^{\mu\nu}\hat{F}_{\mu\nu} - \bar{J}\hat{A}$ where $\hat{A} = \bar{A} + \hat{\mathcal{A}}$ sourced by J response

 $\overline{}$ **Step 1:** Write down EoMs

Electron: (i $\bm d-e\vec A-m)\hat\psi=e\hat{\bm {\mathcal{M}}}\hat\psi$ Driving field: $\partial^2\bar A^\mu=\bar J^\mu$ Response: $\partial^2\hat{\mathcal{A}}^\mu=e\hat{\bar\psi}\gamma^\mu\hat\psi$ **<u>NB:</u>** The response can be macroscopically large $\langle A^\mu \rangle \neq 0$ since $\langle e\widehat{\psi}\gamma^\mu \widehat{\psi} \rangle \neq 0$ \Rightarrow focus on $\langle A^{\mu}\rangle = O(\hbar^0)$ and neglect $\hat{a} \coloneqq \hat{\mathcal{A}} - \langle \hat{\mathcal{A}}\rangle = O(\hbar)$

Observable: Harmonic spectrum of the response EM field **Setup:** QED in a spatially-homogeneous AC field $\overline{E}(t) = \overline{E}_0 \cos(\Omega t)$ $\mathcal{L} = \hat{\bar{\psi}}(i\partial \!\!\!/- e\hat{\cal A} - m)\hat{\psi} - \frac{1}{4}$ $(\partial\!\!\!/-\partial\$ classical driving field \bar{A} = $\langle \bar{A} \rangle$ $\hat{A} - m\big)\hat{\psi} - \frac{1}{4}\hat{F}^{\mu\nu}\hat{F}_{\mu\nu} - \bar{J}\hat{A}$ where $\hat{A} = \bar{A} + \hat{\mathcal{A}}$ sourced by J response

 $\overline{}$ **Step 1:** Write down EoMs

Electron: (i $\bm d-e\vec A-m)\hat\psi=e\hat{\bm {\mathcal{M}}}\hat\psi$ Driving field: $\partial^2\bar A^\mu=\bar J^\mu$ Response: $\partial^2\hat{\mathcal{A}}^\mu=e\hat{\bar\psi}\gamma^\mu\hat\psi$ **<u>NB:</u>** The response can be macroscopically large $\langle A^\mu \rangle \neq 0$ since $\langle e\widehat{\psi}\gamma^\mu \widehat{\psi} \rangle \neq 0$ \Rightarrow focus on $\langle A^{\mu}\rangle = O(\hbar^0)$ and neglect $\hat{a} \coloneqq \hat{\mathcal{A}} - \langle \hat{\mathcal{A}}\rangle = O(\hbar)$

Step 2: Solve the EoMs with the Green function method

 \cdot Electron EoM $\Rightarrow \hat{\psi}(x) = \hat{\psi}_0(x) + \int d^4x' S(x, x') e \mathcal{A}(x') \hat{\psi}(x') = \hat{\psi}_0 + O(e)$

where $(i$ Ø – $e\bar{A}$ – m) $S(x, x') = \delta^4(x - x')$ and $(i$ Ø – $e\bar{A}$ – $m)\hat{\psi}_0 = 0$

 \cdot Response EoM $\Rightarrow \hat{\mathcal{A}}(x) = \hat{\mathcal{A}}_0(x) + \int d^4x' \hat{G}(x, x') e \hat{\bar{\psi}}(x') \gamma^{\mu} \hat{\psi}(x')$

where
$$
\partial^2 G(x, x') = \delta^4 (x - x')
$$
 and $\partial^2 \hat{\mathcal{A}}_0 = 0$

$$
\Rightarrow \langle \hat{\mathcal{A}} \rangle = \int d^4x' G(x, x') \langle e \hat{\bar{\psi}}_0(x') \gamma^{\mu} \hat{\psi}_0(x') \rangle \approx \blacksquare
$$

<u>NB:</u> The quantum part $\hat{a} = \hat{\mathcal{A}} - \langle \hat{\mathcal{A}} \rangle$ **corresponds to** \longleftrightarrow **, which is kinematically disfavored**

Setup: QED in a spatially-homogeneous AC field $\overline{E}(t) = \overline{E}_0 \cos(\Omega t)$ $\mathcal{L} = \hat{\bar{\psi}}(i\partial \!\!\!/- e\hat{\cal A} - m)\hat{\psi} - \frac{1}{4}$ $(\partial\!\!\!/-\partial\$ classical driving field \bar{A} = $\langle \bar{A} \rangle$ $\hat{A} - m\big)\hat{\psi} - \frac{1}{4}\hat{F}^{\mu\nu}\hat{F}_{\mu\nu} - \bar{J}\hat{A}$ where $\hat{A} = \bar{A} + \hat{\mathcal{A}}$ sourced by J response **Observable:** Harmonic spectrum of the response EM field

Step 3: Take the Fourier transform

Ī

$$
\langle \hat{\mathcal{A}}(x) \rangle = \int d^4x' G(x, x') \langle e \hat{\bar{\psi}}_0(x') \gamma^{\mu} \hat{\psi}_0(x') \rangle
$$

 $\tilde{\mathcal{E}}(\omega) \coloneqq -i\omega \langle \widetilde{\hat{\mathcal{A}}(\omega)} \rangle = \frac{-i}{\omega}$ Harmonic spectrum: $\;\; \tilde{\mathcal{E}}(\omega) \coloneqq -i\omega\langle\widetilde{\hat{\mathcal{A}}(\omega)}\rangle = \frac{-i}{\omega}\text{F.\,T.}\left\langle e\widehat{\bar{\psi}}_0\gamma\widehat{\psi}_0\right\rangle$

∴ Solve the Dirac eq. & do the Fourier integral ⇒ Get harmonic spectrum

Use numerics to get an exact harmonic spectrum of vacuum HHG

Numerical observation

Use numerics to get an exact harmonic spectrum of vacuum HHG

Some features of vacuum HHG

(1) Plateau + cutoff + discretized peaks, similarly to solid-state HHG

- (2) Cutoff increases with $E_0 \nearrow$
- (3) Hamonic intensities do not necessary increase with E_0 $(\Rightarrow$ actually, it oscillates with E_0)

Numerical observation

Use numerics to get an exact harmonic spectrum of vacuum HHG

Some features of vacuum HHG

(1) Plateau + cutoff + discretized peaks, similarly to solid-state HHG

(2) Cutoff increases with $E_0 \nearrow$

(3) Hamonic intensities do not necessary increase with E_0 $(\Rightarrow$ actually, it oscillates with E_0)

Origins of those features ? ⇒ Give you an answer with semi-classical analysis

Semi-classical analysis (1/3)

Two contributions to the current $J=\left\langle e\widehat{\bar{\psi}}_0\gamma{\widehat{\psi}}_0\right\rangle\propto\widetilde{\mathcal{E}}$

・ Strong E field ⇒ Pair production

 \Rightarrow Total mode function $\psi_0(t = \text{in}) = \psi_- \rightarrow # \times \psi_- + # \times \psi_+$

- $+$ # \times $e\bar{\psi}_{+}\gamma\psi_{+}$ \longrightarrow Int<u>ra</u>band current • VEV has two contr.: $J = e\bar{\psi}_-\gamma\psi_-\rightarrow \mu \times e\bar{\psi}_-\gamma\psi_-\rightarrow V$ acuum current (usually =0) $+$ # \times $\text{Re} [e {\bar \psi}_+ \gamma \psi_-]$ $\;\rightarrow$ Int<u>er</u>band current
- ・ Different time dynamical phases: $\psi_{\pm} \propto \mathrm{e}^{\mp \mathrm{i} mt}$
	- \Rightarrow Interband current has the fastest time dependence $\propto e^{+2imt}$
	- \Rightarrow the source of high harmonics !

NB: same idea in solid-state HHG [Vampa et al., (2014)]

More quantitative argument: Intermediate particle picture + Semi-classical analysis

Semi-classical analysis (2/3)

More quantitative argument: Intermediate particle picture + Semi-classical analysis

Step 1: Introduce an intermediate particle picture

 \cdot Identify ψ_+ as the instantaneous solutions to the Dirac eq.

 $\psi_0(t)=\alpha(t)\times\psi_-(t)+\beta(t)\times\psi_+(t)$ where $H_{\text{Dirac}}\psi_{\pm}=\pm\sqrt{m^2+\left(\bm{p}+\frac{e\bar{E}_0}{\alpha}\right)^2}$ $rac{E_0}{\Omega}$ sin Ωt 2 ${\psi}_{\pm}= :{E}_{\pm}{\psi}_{\pm}\;(\Rightarrow{\psi}_{\pm}\propto{e}^{\,-i\int{\mathrm{d}}t{E}_{\pm}})$

Semi-classical analysis (2/3)

More quantitative argument: Intermediate particle picture + Semi-classical analysis

Step 1: Introduce an intermediate particle picture

 \cdot Identify ψ_+ as the instantaneous solutions to the Dirac eq.

 $\psi_0(t)=\alpha(t)\times\psi_-(t)+\beta(t)\times\psi_+(t)$ where $H_{\text{Dirac}}\psi_{\pm}=\pm\sqrt{m^2+\left(\bm{p}+\frac{e\bar{E}_0}{\alpha}\right)^2}$ $rac{E_0}{\Omega}$ sin Ωt 2 ${\psi}_{\pm}= :{E}_{\pm}{\psi}_{\pm}\;(\Rightarrow{\psi}_{\pm}\propto{e}^{\,-i\int{\mathrm{d}}t{E}_{\pm}})$

Step 2: Solve the evolution eqs. for the Bogoliubov coefficients $\alpha \& \beta$

- \cdot The evol. eqs. for ψ_0 and ψ_+ are known \Rightarrow can write down evol. eq. for α & β
- \cdot Complicated \Rightarrow Not exactly solvable but analytically with some approx. ⇒ semi-classical method [Dumlu, Dunne (2010)] [HT et al. (2020)]

(1) Periodic jumps w/ freq. $\Omega \Leftarrow$ Pair production occurs periodically at around the minimum gap

(2) β does not increase monotonically but oscillates

⇐ Quantum interference among pair productions (Stuckelberg-phase effect)

 \Rightarrow max β when most constructive \Leftrightarrow 2 $\pi\Z~\ni~E_+-E_-\propto e\bar{E}_0/\Omega \Rightarrow$ **determine harmonic intensity**

Semi-classical analysis (3/3)

More quantitative argument: Intermediate particle picture + Semi-classical analysis

Semi-classical lessons v.s. numerics

Lessons from semi-classical analysis:

- Harmonic intensity oscillates with \bar{E}_0 due to quantum interference of the pair production
- High harmonics originate from the interband current, as it is very fast $_{j_{\rm inter}}$ « $e^{+2{\rm i}\int dt\sqrt{m^2+\left(\bm{p}+\frac{e\overline{E}_0}{\Omega}\sin\Omega t\right)^2}}$
- Cutoff law min $(E_+ E_-) < \omega < \max(E_+ E_-) \Rightarrow 2m < \omega < 2eE_0/\Omega$

NB: Time dependence of the driving field is crucial; otherwise, no interference and no plateau

Semi-classical lessons v.s. numerics

Lessons from semi-classical analysis:

- Harmonic intensity oscillates with \bar{E}_0 due to quantum interference of the pair production
- High harmonics originate from the interband current, as it is very fast $_{j_{\rm inter}}$ « $e^{+2{\rm i}\int dt\sqrt{m^2+\left(\bm{p}+\frac{e\overline{E}_0}{\Omega}\sin\Omega t\right)^2}}$
- Cutoff law min $(E_{+} E_{-}) < \omega < \max(E_{+} E_{-}) \Rightarrow 2m < \omega < 2eE_{0}/\Omega$

NB: Time dependence of the driving field is crucial; otherwise, no interference and no plateau

All of those lessons are consistent with numerics !

1. Introduction

2. Theory

- **・** Numerical simulation ⇒ observe basic features of HHG
- **・** Semi-classical analysis ⇒ reveal the origin of HHG

3. Summary

Discuss vacuum high-harmonic generation (HHG) in strong-field QED

Take-home messages:

Harmonic order ω/Ω

- **・** Vacuum HHG surely occurs and semi-classical analysis can explain the basic features (e.g., cutoff law)
- **・** Physics: Interband current induced by the Schwinger effect and quantum interference of the Schwinger effect are the essence

NB: Very preliminary, so comments/criticisms are welcome !