Vacuum HHG in strong-field QED

Hidetoshi Taya (Keio U.)

This talk

Discuss vacuum high-harmonic generation (HHG) in strong-field QED

Take-home messages:

- Vacuum HHG surely occurs and semi-classical analysis can explain the basic features (e.g., cutoff law)
- Physics: Interband current induced by the Schwinger effect and quantum interference of the Schwinger effect are the essence

<u>NB:</u> Very preliminary, so comments/criticisms are welcome ! <u>NB:</u> This work is an extension of my previous work for 2d Dirac material [HT, Hongo, Ikeda (2021)]

1. Introduction

2. Theory

- Numerical simulation \Rightarrow observe basic features of HHG
- Semi-classical analysis \Rightarrow reveal the origin of HHG

3. Summary

1. Introduction

2. Theory

- Numerical simulation \Rightarrow observe basic features of HHG
- Semi-classical analysis \Rightarrow reveal the origin of HHG

3. Summary

Introduction to HHG

Actual HHG spectrum in a solid

Originally developed in optics and solid-state physics

- First observation with gas (= one-band material) in 1988
 - ⇒ Many applications: laser pointer, attosecond light source, ... Nobel prize in 2023
- Recent development: observation with solids (= band materials) in 2011

 \Rightarrow Key features: plateau + cutoff + discretized peaks

Very natural, if we admit the analogy b/w band-materials & QED vacuum

Many successful analogies: Schwinger effect ↔ Landau-Zener transition
 Dynamically assisted Schwinger ↔ Franz-Keldysh effect
 Quantum interference of Schwinger ↔ Stuckelberg-phase effect ...

Not only interesting but also useful

[T. Gaumnitz et al., (2017)]

- The fastest light source of the zs $(zepto second ~ 1/m_e)$ order (cf. current world record: 43 as ~ $(100 \text{ eV})^{-1}$)
- Application to physics near/beyond the pair creation threshold (e.g., dynamically assisted Schwinger)

Previous studies

- This is not the first study: [Piazza, Hatsagortsyan, Keitel (2005)], [Fedotov, Narozhny (2006)], [Bohl, King, Ruhl (2015)] ...
- But, previous studies are based on constant-field (low freq.) approx. (e.g., EH Lagrangian)
 - ⇒ Problematic, since time dependence can change physics drastically !

Sales point: Proper inclusion of the time dependence of the input driving field

1. Introduction

2. Theory

- Numerical simulation \Rightarrow observe basic features of HHG
- Semi-classical analysis \Rightarrow reveal the origin of HHG

3. Summary

Setup: QED in a spatially-homogeneous AC field $\overline{E}(t) = \overline{E}_0 \cos(\Omega t)$ $\mathcal{L} = \widehat{\psi}(i\partial - e\hat{A} - m)\widehat{\psi} - \frac{1}{4}\widehat{F}^{\mu\nu}\widehat{F}_{\mu\nu} - \overline{J}\widehat{A}$ where $\widehat{A} = \overline{A} + \widehat{A}$ classical driving field $\overline{A} = \langle \overline{A} \rangle$ **Observable:** Harmonic spectrum of the response EM field

Step 1: Write down EoMs

Electron: $(i\partial - e\bar{A} - m)\hat{\psi} = e\hat{A}\hat{\psi}$ Driving field: $\partial^2 \bar{A}^{\mu} = \bar{J}^{\mu}$ Response: $\partial^2 \hat{A}^{\mu} = e\hat{\psi}\gamma^{\mu}\hat{\psi}$ **NB:** The response can be macroscopically large $\langle \hat{A}^{\mu} \rangle \neq 0$ since $\langle e\hat{\psi}\gamma^{\mu}\hat{\psi} \rangle \neq 0$ \Rightarrow focus on $\langle \hat{A}^{\mu} \rangle = O(\hbar^0)$ and neglect $\hat{a} \coloneqq \hat{A} - \langle \hat{A} \rangle = O(\hbar)$

Setup: QED in a spatially-homogeneous AC field $\overline{E}(t) = \overline{E}_0 \cos(\Omega t)$ $\mathcal{L} = \widehat{\psi}(i\partial - e\hat{A} - m)\widehat{\psi} - \frac{1}{4}\widehat{F}^{\mu\nu}\widehat{F}_{\mu\nu} - \overline{J}\widehat{A}$ where $\widehat{A} = \overline{A} + \widehat{A}$ classical driving field $\overline{A} = \langle \overline{A} \rangle$ **Observable:** Harmonic spectrum of the response EM field

<u>Step 1:</u> Write down EoMs

Electron: $(i\partial - eA - m)\hat{\psi} = e\hat{A}\hat{\psi}$ Driving field: $\partial^2 \bar{A}^{\mu} = \bar{J}^{\mu}$ Response: $\partial^2 \hat{A}^{\mu} = e\hat{\psi}\gamma^{\mu}\hat{\psi}$ <u>NB:</u> The response can be macroscopically large $\langle \hat{A}^{\mu} \rangle \neq 0$ since $\langle e\hat{\psi}\gamma^{\mu}\hat{\psi} \rangle \neq 0$ \Rightarrow focus on $\langle \hat{A}^{\mu} \rangle = O(\hbar^0)$ and neglect $\hat{a} \coloneqq \hat{A} - \langle \hat{A} \rangle = O(\hbar)$

<u>Step 2</u>: Solve the EoMs with the Green function method

• Electron EoM $\Rightarrow \hat{\psi}(x) = \hat{\psi}_0(x) + \int d^4x' S(x, x') e \mathcal{A}(x') \hat{\psi}(x') = \hat{\psi}_0 + O(e)$

where $(i\partial - e\bar{A} - m)S(x, x') = \delta^4(x - x')$ and $(i\partial - e\bar{A} - m)\hat{\psi}_0 = 0$

• Response EoM $\Rightarrow \hat{\mathcal{A}}(x) = \hat{\mathcal{A}}_0(x) + \int d^4x' G(x, x') e \hat{\bar{\psi}}(x') \gamma^{\mu} \hat{\psi}(x')$

where
$$\partial^2 G(x, x') = \delta^4(x - x')$$
 and $\partial^2 \hat{\mathcal{A}}_0 = 0$

$$\Rightarrow \langle \hat{\mathcal{A}} \rangle = \int d^4 x' G(x, x') \left\langle e \hat{\bar{\psi}}_0(x') \gamma^\mu \hat{\psi}_0(x') \right\rangle \approx$$

<u>NB</u>: The quantum part $\hat{a} = \hat{A} - \langle \hat{A} \rangle$ corresponds to $\langle \hat{A} \rangle$, which is kinematically disfavored

Setup: QED in a spatially-homogeneous AC field $\overline{E}(t) = \overline{E}_0 \cos(\Omega t)$ $\mathcal{L} = \widehat{\psi}(i\partial - e\hat{A} - m)\widehat{\psi} - \frac{1}{4}\widehat{F}^{\mu\nu}\widehat{F}_{\mu\nu} - \overline{J}\widehat{A}$ where $\widehat{A} = \overline{A} + \widehat{A}$ classical driving field $\overline{A} = \langle \overline{A} \rangle$ **Observable:** Harmonic spectrum of the response EM field

Step 3: Take the Fourier transform

$$\left\langle \hat{\mathcal{A}}(x) \right\rangle = \int \mathrm{d}^4 x' G(x, x') \left\langle e \hat{\bar{\psi}}_0(x') \gamma^\mu \hat{\psi}_0(x') \right\rangle$$

Harmonic spectrum: $\tilde{\mathcal{E}}(\omega) \coloneqq -i\omega \langle \widetilde{\hat{\mathcal{A}}(\omega)} \rangle = \frac{-i}{\omega} F.T. \langle e \hat{\psi}_0 \gamma \hat{\psi}_0 \rangle$

: Solve the Dirac eq. & do the Fourier integral \Rightarrow Get harmonic spectrum

✓ Use numerics to get an exact harmonic spectrum of vacuum HHG

Numerical observation

✔ Use numerics to get an exact harmonic spectrum of vacuum HHG

Some features of vacuum HHG

(1) Plateau + cutoff + discretized peaks, similarly to solid-state HHG

- (2) Cutoff increases with $E_0 \nearrow$
- (3) Hamonic intensities do not necessary increase with E_0 (\Rightarrow actually, it oscillates with E_0)

Numerical observation

✔ Use numerics to get an exact harmonic spectrum of vacuum HHG

Some features of vacuum HHG

(1) Plateau + cutoff + discretized peaks, similarly to solid-state HHG

(2) Cutoff increases with $E_0 \nearrow$

(3) Hamonic intensities do not necessary increase with E_0 (\Rightarrow actually, it oscillates with E_0)

Origins of those features ? \Rightarrow **Give you an answer with semi-classical analysis**

Semi-classical analysis (1/3)

Two contributions to the current $J = \left\langle e \widehat{\psi}_0 \gamma \widehat{\psi}_0 \right\rangle \propto \widetilde{\mathcal{E}}$

• Strong E field \Rightarrow Pair production

 $\Rightarrow \text{Total mode function } \psi_0(t = \text{in}) = \psi_- \rightarrow \# \times \psi_- + \# \times \psi_+$

- VEV has two contr.: $J = e\bar{\psi}_{-}\gamma\psi_{-} \rightarrow \# \times e\bar{\psi}_{-}\gamma\psi_{-} \rightarrow \forall acuum current (usually =0)$ + $\# \times e\bar{\psi}_{+}\gamma\psi_{+} \rightarrow \text{Int}\underline{ra}$ band current + $\# \times \text{Re}[e\bar{\psi}_{+}\gamma\psi_{-}] \rightarrow \text{Int}\underline{er}$ band current
- Different time dynamical phases: $\psi_{\pm} \propto \mathrm{e}^{\mp \mathrm{i} m t}$
 - \Rightarrow Interband current has the fastest time dependence $\propto e^{+2imt}$
 - \Rightarrow the source of high harmonics !

NB: same idea in solid-state HHG [Vampa et al., (2014)]

More quantitative argument: Intermediate particle picture + Semi-classical analysis

Semi-classical analysis (2/3)

More quantitative argument: Intermediate particle picture + Semi-classical analysis

<u>Step 1</u>: Introduce an intermediate particle picture

 \cdot Identify ψ_{\pm} as the instantaneous solutions to the Dirac eq.

 $\psi_0(t) = \alpha(t) \times \psi_-(t) + \beta(t) \times \psi_+(t) \quad \text{where } H_{\text{Dirac}}\psi_{\pm} = \pm \sqrt{m^2 + \left(\boldsymbol{p} + \frac{e\bar{E}_0}{\Omega}\sin\Omega t\right)^2} \psi_{\pm} =: E_{\pm}\psi_{\pm} \ (\Rightarrow \psi_{\pm} \propto e^{-i\int dt E_{\pm}})$

Semi-classical analysis (2/3)

More quantitative argument: Intermediate particle picture + Semi-classical analysis

<u>Step 1</u>: Introduce an intermediate particle picture

 \cdot Identify ψ_{\pm} as the instantaneous solutions to the Dirac eq.

 $\psi_0(t) = \alpha(t) \times \psi_-(t) + \beta(t) \times \psi_+(t) \quad \text{where } H_{\text{Dirac}}\psi_{\pm} = \pm \sqrt{m^2 + \left(p + \frac{e\bar{E}_0}{\Omega}\sin\Omega t\right)^2}\psi_{\pm} =: E_{\pm}\psi_{\pm} \iff \psi_{\pm} \propto e^{-i\int dt E_{\pm}})$

Step 2: Solve the evolution eqs. for the Bogoliubov coefficients $\alpha \& \beta$

- · The evol. eqs. for ψ_0 and ψ_{\pm} are known \Rightarrow can write down evol. eq. for $\alpha \& \beta$
- Complicated \Rightarrow Not exactly solvable but analytically with some approx. \Rightarrow semi-classical method [Dumlu, Dunne (2010)] [HT et al. (2020)]

(1) Periodic jumps w/ freq. $\Omega \leftarrow$ Pair production occurs periodically at around the minimum gap

(2) β does not increase monotonically but oscillates

Quantum interference among pair productions (Stuckelberg-phase effect)

 \Rightarrow max β when most constructive $\Leftrightarrow 2\pi\mathbb{Z} \ni E_+ - E_- \propto e\overline{E}_0/\Omega \Rightarrow$ determine harmonic intensity

Semi-classical analysis (3/3)

More quantitative argument: Intermediate particle picture + Semi-classical analysis

<u>Semi-classical lessons v.s. numerics</u>

Lessons from semi-classical analysis:

- Harmonic intensity oscillates with \overline{E}_0 due to quantum interference of the pair production
- High harmonics originate from the interband current, as it is very fast $J_{inter} \propto e^{+2i\int dt \sqrt{m^2 + (p + \frac{e\overline{E}_0}{\Omega} \sin \Omega t)^2}}$
- Cutoff law min $(E_+ E_-) < \omega < \max(E_+ E_-) \Rightarrow 2m < \omega < 2eE_0/\Omega$

<u>NB</u>: Time dependence of the driving field is crucial; otherwise, no interference and no plateau

<u>Semi-classical lessons v.s. numerics</u>

Lessons from semi-classical analysis:

- Harmonic intensity oscillates with \overline{E}_0 due to quantum interference of the pair production
- High harmonics originate from the interband current, as it is very fast $J_{\text{inter}} \propto e^{+2i\int dt \sqrt{m^2 + (p + \frac{e\overline{E}_0}{\Omega} \sin \Omega t)^2}}$
- Cutoff law min $(E_+ E_-) < \omega < \max(E_+ E_-) \Rightarrow 2m < \omega < 2eE_0/\Omega$

NB: Time dependence of the driving field is crucial; otherwise, no interference and no plateau

All of those lessons are consistent with numerics !

1. Introduction

2. Theory

- Numerical simulation \Rightarrow observe basic features of HHG
- Semi-classical analysis \Rightarrow reveal the origin of HHG

3. Summary

Discuss vacuum high-harmonic generation (HHG) in strong-field QED

Take-home messages:

Harmonic order ω/Ω

- Vacuum HHG surely occurs and semi-classical analysis can explain the basic features (e.g., cutoff law)
- Physics: Interband current induced by the Schwinger effect and quantum interference of the Schwinger effect are the essence

<u>NB:</u> Very preliminary, so comments/criticisms are welcome ! <u>NB:</u> This work is an extension of my previous work for 2d Dirac material [HT, Hongo, Ikeda (2021)]