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This talk
Discuss vacuum high-harmonic generation (HHG) in strong-field QED

・ Vacuum HHG surely occurs and semi-classical analysis can explain the basic features

・ Physics: Interband current induced by the Schwinger effect and 
                  quantum interference of the Schwinger effect are the essence

vacuum

(e.g., cutoff law)

Take-home messages:

vacuum

Naively … Vacuum HHG

NB: This work is an extension of my previous work for 2d Dirac material [HT, Hongo, Ikeda (2021)]

NB: Very preliminary, so comments/criticisms are welcome !
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・ Numerical simulation ⇒ observe basic features of HHG

・ Semi-classical analysis ⇒ reveal the origin of HHG



Contents

1. Introduction

2. Theory

3. Summary

・ Numerical simulation ⇒ observe basic features of HHG

・ Semi-classical analysis ⇒ reveal the origin of HHG



Originally developed in optics and solid-state physics

Introduction to HHG

・ First observation with gas (= one-band material) in 1988 

material

gas              liquids             solids

⇒ Many applications: laser pointer, attosecond light source, …
     Nobel prize in 2023

[Ghimire et al., (2011)]

Actual HHG spectrum in a solid

𝜔out/𝜔in

⇒ Key features: plateau + cutoff + discretized peaks

cutoff

・ Recent development: observation with solids (= band materials) in 2011

plateau



QED analog ?

vacuum

Previous studies

・ The fastest light source of the zs (zepto second ~ 1/𝑚𝑒) order (cf. current world record: 43 as ~ 100 eV −1)

Very natural, if we admit the analogy b/w band-materials & QED vacuum

Not only interesting but also useful

・ This is not the first study: [Piazza, Hatsagortsyan, Keitel (2005)], [Fedotov, Narozhny (2006)], [Bohl, King, Ruhl (2015)] … 

・ But, previous studies are based on constant-field (low freq.) approx. (e.g., EH Lagrangian)

⇒ Problematic, since time dependence can change physics drastically ! 

・ Application to physics near/beyond the pair creation threshold (e.g., dynamically assisted Schwinger)  

・ Many successful analogies: 

[T. Gaumnitz et al., (2017)]

Schwinger effect Landau-Zener transition
Dynamically assisted Schwinger Franz-Keldysh effect
Quantum interference of Schwinger Stuckelberg-phase effect …

Sales point: Proper inclusion of the time dependence of the input driving field
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Formulation

Observable: Harmonic spectrum of the response EM field
                        

Setup: QED in a spatially-homogeneous AC field ത𝐸(𝑡) = ത𝐸0cos(Ω𝑡)

ℒ = ෠ത𝜓 i𝜕 − 𝑒 መ𝐴 − 𝑚 ෠𝜓 −
1

4
෠𝐹𝜇𝜈 ෠𝐹𝜇𝜈 − ҧ𝐽 መ𝐴 where  መ𝐴 = ҧ𝐴 + መ𝒜/

classical driving field ҧ𝐴= ҧ𝐴
sourced by 𝐽

response
/



Formulation

Observable: Harmonic spectrum of the response EM field
                        

Setup: QED in a spatially-homogeneous AC field ത𝐸(𝑡) = ത𝐸0cos(Ω𝑡)

Step 1:  Write down EoMs
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Electron: i𝜕 − 𝑒 ҧ𝐴 − 𝑚 ෠𝜓 = 𝑒 መ𝒜 ෠𝜓 Driving field: 𝜕2 ҧ𝐴𝜇 = ҧ𝐽𝜇/ / / Response: 𝜕2 መ𝒜𝜇 = 𝑒 ෠ത𝜓𝛾𝜇 ෠𝜓

NB: The response can be macroscopically large መ𝒜𝜇 ≠ 0 since 𝑒 ෠ത𝜓𝛾𝜇 ෠𝜓 ≠ 0

        ⇒ focus on መ𝒜𝜇 = 𝑂(ℏ0) and neglect ො𝑎 ≔ መ𝒜 − መ𝒜 = 𝑂(ℏ)
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Observable: Harmonic spectrum of the response EM field
                        

Setup: QED in a spatially-homogeneous AC field ത𝐸(𝑡) = ത𝐸0cos(Ω𝑡)
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NB: The response can be macroscopically large መ𝒜𝜇 ≠ 0 since 𝑒 ෠ത𝜓𝛾𝜇 ෠𝜓 ≠ 0

        ⇒ focus on መ𝒜𝜇 = 𝑂(ℏ0) and neglect ො𝑎 ≔ መ𝒜 − መ𝒜 = 𝑂(ℏ)

Step 2: Solve the EoMs with the Green function method

・Electron EoM ⇒ ෠𝜓 𝑥 = ෠𝜓0 𝑥 + ∫ d4𝑥′𝑆 𝑥, 𝑥′ 𝑒𝒜 𝑥′ ෠𝜓 𝑥′ = ෠𝜓0 + 𝑂(𝑒)

・Response EoM ⇒ መ𝒜 𝑥 = መ𝒜0 𝑥 + ∫ d4𝑥′𝐺 𝑥, 𝑥′ 𝑒 ෠ത𝜓(𝑥′)𝛾𝜇 ෠𝜓(𝑥′)

where i𝜕 − 𝑒 ҧ𝐴 − 𝑚 𝑆(𝑥, 𝑥′) = 𝛿4(𝑥 − 𝑥′) and i𝜕 − 𝑒 ҧ𝐴 − 𝑚 ෠𝜓0 = 0//

where 𝜕2𝐺(𝑥, 𝑥′) = 𝛿4(𝑥 − 𝑥′) and 𝜕2 መ𝒜0 = 0

/ /

⇒ መ𝒜 = ∫ d4𝑥′𝐺 𝑥, 𝑥′ 𝑒 ෠ത𝜓0 𝑥′ 𝛾𝜇 ෠𝜓0 𝑥′  ≈ ～～

NB: The quantum part ො𝑎 = መ𝒜 − መ𝒜 corresponds to                     , which is kinematically disfavored～～～



Setup: QED in a spatially-homogeneous AC field ത𝐸(𝑡) = ത𝐸0cos(Ω𝑡)

ℒ = ෠ത𝜓 i𝜕 − 𝑒 መ𝐴 − 𝑚 ෠𝜓 −
1

4
෠𝐹𝜇𝜈 ෠𝐹𝜇𝜈 − ҧ𝐽 መ𝐴 where  መ𝐴 = ҧ𝐴 + መ𝒜/

classical driving field ҧ𝐴= ҧ𝐴
sourced by 𝐽
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Step 3: Take the Fourier transform

መ𝒜(𝑥) = ∫ d4𝑥′𝐺 𝑥, 𝑥′ 𝑒 ෠ത𝜓0 𝑥′ 𝛾𝜇 ෠𝜓0 𝑥′

∴ Solve the Dirac eq. & do the Fourier integral ⇒ Get harmonic spectrum

ሚℰ 𝜔 ≔ −𝑖𝜔 ෫መ𝒜(𝜔) =
−i

𝜔
F. T. 𝑒 ෠ത𝜓0𝛾 ෠𝜓0

Observable: Harmonic spectrum of the response EM field
                        

F.T.

Harmonic spectrum: 

Formulation



Numerical observation
Use numerics to get an exact harmonic spectrum of vacuum HHG



Numerical observation

Some features of vacuum HHG

(1) Plateau + cutoff + discretized peaks, similarly to solid-state HHG

(2) Cutoff increases with 𝐸0 

(3) Hamonic intensities do not necessary increase with 𝐸0 

     (⇒ actually, it oscillates with 𝐸0)

Weak field (fixed ΤΩ 𝑚 = 0.2) Strong field

𝑒𝐸0/𝑚2 = 0.05
(𝛾 = 2)

𝑒𝐸0/𝑚2 = 0.01

(𝛾 ≔
1

𝑎0
=

𝑚Ω

𝑒𝐸0
= 10)

𝑒𝐸0/𝑚2 = 0.15
(𝛾 = 0.666 …)

𝑒𝐸0/𝑚2 = 0.30
(𝛾 = 0.333 …)
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Harmonic spectrum for ത𝐸 = 𝐸0 cos Ω𝑡

Use numerics to get an exact harmonic spectrum of vacuum HHG

Harmonic order 𝜔/Ω
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+ # × 𝑒 ത𝜓+𝛾𝜓+

Two contributions to the current 𝑱 = 𝒆 ෡ഥ𝝍𝟎𝜸 ෡𝝍𝟎 ∝ ෩𝓔

Semi-classical analysis (1/3)

・ Strong E field ⇒ Pair production 

                              ⇒ Total mode function 𝜓0 𝑡 = in = 𝜓−  →  # × 𝜓− + # × 𝜓+

・ VEV has two contr.: 𝐽 = 𝑒 ത𝜓−𝛾𝜓−  →  # × 𝑒 ത𝜓−𝛾𝜓−

+ # × Re[𝑒 ത𝜓+𝛾𝜓−]

・ Different time dynamical phases: 𝜓± ∝ e∓i𝑚𝑡

⇒ Interband current has the fastest time dependence ∝ 𝑒+2i𝑚𝑡

⇒ the source of high harmonics !

→ Vacuum current (usually =0)

→ Interband current

→ Intraband current

[Vampa et al., (2014)]NB: same idea in solid-state HHG



More quantitative argument: Intermediate particle picture + Semi-classical analysis

Semi-classical analysis (2/3)



More quantitative argument: Intermediate particle picture + Semi-classical analysis

Semi-classical analysis (2/3)

Step 1:  Introduce an intermediate particle picture

・Identify 𝜓± as the instantaneous solutions to the Dirac eq.

𝜓0(𝑡) = 𝛼(𝑡) × 𝜓−(𝑡) + 𝛽 𝑡 × 𝜓+(𝑡) where 𝐻Dirac𝜓±= ± 𝑚2 + 𝒑 +
𝑒 ത𝐸0

Ω
sin Ω𝑡

2

𝜓± =: 𝐸±𝜓± (⇒ 𝜓± ∝ 𝑒−𝑖∫ d𝑡𝐸±)



More quantitative argument: Intermediate particle picture + Semi-classical analysis

Semi-classical analysis (2/3)

Step 1:  Introduce an intermediate particle picture

Step 2:  Solve the evolution eqs. for the Bogoliubov coefficients 𝛼 & 𝛽

(1) Periodic jumps w/ freq. Ω  ⇐ Pair production occurs periodically at around the minimum gap

(2) 𝛽 does not increase monotonically but oscillates 
     ⇐ Quantum interference among pair productions (Stuckelberg-phase effect)

・Identify 𝜓± as the instantaneous solutions to the Dirac eq.

・The evol. eqs. for 𝜓0 and 𝜓± are known ⇒ can write down evol. eq. for 𝛼 & 𝛽

𝜓0(𝑡) = 𝛼(𝑡) × 𝜓−(𝑡) + 𝛽 𝑡 × 𝜓+(𝑡)

・Complicated ⇒ Not exactly solvable but analytically with some approx.
                           ⇒ semi-classical method [Dumlu, Dunne (2010)] [HT et al. (2020)]

where 𝐻Dirac𝜓±= ± 𝑚2 + 𝒑 +
𝑒 ത𝐸0

Ω
sin Ω𝑡

2

𝜓± =: 𝐸±𝜓± (⇒ 𝜓± ∝ 𝑒−𝑖∫ d𝑡𝐸±)

Figure stolen from [Shevchenko, Ashhab, Nori (2010)]

⇐
𝛽 2

𝑡

⇒ max 𝛽 when most constructive ⇔ 2𝜋ℤ ∋  𝐸+ − 𝐸− ∝ 𝑒 ത𝐸0/Ω ⇒ determine harmonic intensity

𝜓+ ∝ 𝑒−𝑖∫ d𝑡𝐸+

𝜓− ∝ 𝑒+𝑖∫ d𝑡𝐸−



Semi-classical analysis (3/3)

Step 3:  Calculate intra- and inter-band currents

∼ 𝛼(𝑡)𝛽(𝑡)𝑒 ത𝜓+(𝑡)𝛾𝜓−(𝑡) ∼ 𝛽 𝑡 𝑒
+2i∫ d𝑡 𝑚2+ 𝒑+

𝑒ഥ𝐸0
Ω

sin Ω𝑡
2

∼ 𝛽 𝑡 2𝑒 ത𝜓+ 𝑡 𝛾𝜓+ 𝑡 ∼ 𝛽 𝑡 2

ℰ(𝑡) ∝ 𝐽(𝑡) = 𝐽intra(𝑡) + 𝐽inter(𝑡)

⇒ ሚℰ 𝜔 ∝ ሚ𝐽 𝜔 = ሚ𝐽intra 𝜔 + 𝐽inter 𝜔

~ ∫ d𝑡 𝑒−i𝜔𝑡 𝛽 𝑡 2 + ∫ d𝑡 𝑒−i𝜔𝑡 𝛽 𝑡 𝑒
+2i∫ d𝑡 𝑚2+ 𝒑+

𝑒 ത𝐸0
Ω

sin Ω𝑡
2

~ 𝛽 2𝛿 𝜔 − Ω + 𝛽∫ d𝑡 𝑒−i𝜔𝑡 𝑒
+2i∫ d𝑡 𝑚2+ 𝒑+

𝑒 ത𝐸0
Ω

sin Ω𝑡
2

can be non-negligible only if  2 min 𝑚2 + 𝒑 +
𝑒 ത𝐸0

Ω
sin Ω𝑡

2

<  𝜔 < 2 max 𝑚2 + 𝒑 +
𝑒 ത𝐸0

Ω
sin Ω𝑡

2

⇒ 2𝑚 <  𝜔 < 2𝑒𝐸0/Ω ⇒ determine the plateau and the cutoff

More quantitative argument: Intermediate particle picture + Semi-classical analysis



Lessons from semi-classical analysis:

Semi-classical lessons v.s. numerics

・ Harmonic intensity oscillates with ത𝐸0 due to quantum interference of the pair production 

・ High harmonics originate from the interband current, as it is very fast 𝐽inter ∝ 𝑒
+2i∫ d𝑡 𝑚2+ 𝒑+

𝑒ഥ𝐸0
Ω

sin Ω𝑡
2

 

・ Cutoff law min 𝐸+ − 𝐸− < 𝜔 < max 𝐸+ − 𝐸−  ⇒  2𝑚 <  𝜔 < 2𝑒𝐸0/Ω

NB： Time dependence of the driving field is crucial; otherwise, no interference and no plateau
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All of those lessons are consistent with numerics !

Harmonic intensity at 𝜔/Ω = 45 (with 
Ω

𝑚
= 0.1)Harmonic spectrum for 

𝑒𝐸0

𝑚2 = 0.3,
Ω

𝑚
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𝜔 = 2𝑚 𝜔 = 2𝑒𝐸0/Ω

・ Cutoff law min 𝐸+ − 𝐸− < 𝜔 < max 𝐸+ − 𝐸−  ⇒  2𝑚 <  𝜔 < 2𝑒𝐸0/Ω

NB： Time dependence of the driving field is crucial; otherwise, no interference and no plateau
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Summary

NB: Very preliminary, so comments/criticisms are welcome !

Discuss vacuum high-harmonic generation (HHG) in strong-field QED

・ Vacuum HHG surely occurs and semi-classical analysis can explain the basic features

・ Physics: Interband current induced by the Schwinger effect and 
                  quantum interference of the Schwinger effect are the essence

vacuum

(e.g., cutoff law)

Take-home messages:

Vacuum HHG

NB: This work is an extension of my previous work for 2d Dirac material [HT, Hongo, Ikeda (2021)]
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