Vacuum HHG
in strong-field QED

Hidetoshi Taya (Keio U.)



This talk

Discuss vacuum high-harmonic generation (HHG) in strong-field QED

Naively ... Vacuum HHG

e

vacuum > vacuum  ——Pp—

Take-home messages:

* Vacuum HHG surely occurs and semi-classical analysis can explain the basic features
(e.g., cutoff law)

* Physics: Interband current induced by the Schwinger effect and
quantum interference of the Schwinger effect are the essence

NB
NB:

: Very preliminary, so comments/criticisms are welcome !
This work is an extension of my previous work for 2d Dirac material [HT, Hongo, Ikeda (2021)]
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Introduction to HHG

Actual HHG spectrum in a solid

material
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[Ghimire et al., (2011)]
Originally developed in optics and solid-state physics

* First observation with gas (= one-band material) in 1988

= Many applications: laser pointer, attosecond light source, ...
Nobel prize in 2023

* Recent development: observation with solids (= band materials) in 2011
= Key features: plateau + cutoff + discretized peaks



QED analog ?
g

vacuum +

Very natural, if we admit the analogy b/w band-materials & QED vacuum

* Many successful analogies: Schwinger effect € Landau-Zener transition
Dynamically assisted Schwinger €« Franz-Keldysh effect
Quantum interference of Schwinger € Stuckelberg-phase effect ...

Not only interesting but also useful

[T. Gaumnitz et al., (2017)]

* The fastest light source of the zs (zepto second - 1/m,) order (cf. current world record: 43 as ~ (100 eV) 1)

* Application to physics near/beyond the pair creation threshold (e.g., dynamically assisted Schwinger)

Previous studies

* This is not the first study: [Piazza, Hatsagortsyan, Keitel (2005)], [Fedotov, Narozhny (2006)], [Bohl, King, Ruhl (2015)] ...

* But, previous studies are based on constant-field (low freq.) approx. (e.g., EH Lagrangian)
= Problematic, since time dependence can change physics drastically !

Sales point: Proper inclusion of the time dependence of the input driving field




Contents
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* Numerical simulation = observe basic features of HHG

» Semi-classical analysis = reveal the origin of HHG
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Formulation

Setup: QED in a spatially-nomogeneous AC field E(t) = Eycos(Qt)

classical driving field A= (A)

7 (; 1 r_lpauwp TA A iy sourced by J
L=y(id —ed —m)p - FFE, —JA where A=A+ A

<+——— response

Observable: Harmonic spectrum of the response EM field
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Setup: QED in a spatially-nomogeneous AC field E(t) = Eycos(Qt)

classical driving field A= (A)

7 (; 1 r_lpauwp TA A iy sourced by J
L=y(id —ed —m)p - FFE, —JA where A=A+ A

<+——— response

Observable: Harmonic spectrum of the response EM field

Step 1: Write down EoMs

Electron: (id — ed — m)) = ey  Driving field: 924* = J*  Response: 92A* = ey i
NB: The response can be macroscopically large (A#) # 0 since <e$y“1/3> # 0
= focus on (AH*) = 0(h°) and neglect @ := A — (A) = 0(h)




Formulation

Setup: QED in a spatially-nomogeneous AC field E(t) = Eycos(Qt)

classical driving field A= (A)

7 (; 1 r_lpauwp TA A iy sourced by J
L=y(id —ed —m)p - FFE, —JA where A=A+ A

+——— response

Observable: Harmonic spectrum of the response EM field

Step 1: Write down EoMs
Electron: (id — ed —m) = edp  Driving field: 924# = j  Response: 92A* = eyt
NB: The response can be macroscopically large (A#) # 0 since <e$y“1/3> # 0
= focus on (AH*) = 0(h°) and neglect @ := A — (A) = 0(h)
Step 2: Solve the EoMs with the Green function method
+ Electron EoM = ¢(x) = Po(x) + [ d*x'S(x, x" eA(x)P(x") = Py + 0(e)
where (id —ed —m)S(x,x) = 6*(x —x") and (id —ed —m)P, =0

- Response EoM = A(x) = Ay (x) + [ d*x'G (x, x e (x )y P (x)

where 392G (x,x") = §*(x —x") and 924, =0

= (A) = [ 42602 (oI Poc)) = Ow
NB: The quantum part a = A — (A) corresponds to < which is kinematically disfavored




Formulation

Setup: QED in a spatially-nomogeneous AC field E(t) = Eycos(Qt)

classical driving field A= (A)

7 (; 1 r_lpauwp TA A iy sourced by J
L=(id —ed —m)p - FFE, —JA where A=A+ A

<+——— response

Observable: Harmonic spectrum of the response EM field

Step 3: Take the Fourier transform

() = J G x) (o o)

F.T.

Harmonic spectrum: £(w) = —iw(%)) = _;iF- T. <61/70V1/70>

.. Solve the Dirac eq. & do the Fourier integral = Get harmonic spectrum




Numerical observation

v Use numerics to get an exact harmonic spectrum of vacuum HHG




Numerical observation

v Use numerics to get an exact harmonic spectrum of vacuum HHG

Harmonic intensity |&(w)|/Q

Harmonic spectrum for E = E, cos Ot

Weak field (fixed Q/m = 0.2)

eEy/m? = 0.01 eEy/m? = 0.05 eEy/m? = 0.15
(y = ai =2 _ 10) (y =2) (y = 0.666...)
0
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ﬁ Strong field
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Some features of vacuum HHG
(1) Plateau + cutoff + discretized peaks, similarly to solid-state HHG
(2) Cutoff increases with E, 2

(3) Hamonic intensities do not necessary increase with E,
(= actually, it oscillates with Ej)




Numerical observation

v Use numerics to get an exact harmonic spectrum of vacuum HHG

Harmonic spectrum for E = E, cos Ot
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Some features of vacuum HHG

(1) Plateau + cutoff + discretized peaks, similarly to solid-state HHG

(2) Cutoff increases with E, 2

(3) Hamonic intensities do not necessary increase with E,
(= actually, it oscillates with Ej)

Origins of those features ? = Give you an answer with semi-classical analysis




Semi-classical analysis (1/3)

Two contributions to the current ] = <e17)0y17)0> < &

- Strong E field = Pair production
= Total mode function Yy(t =in) =yY_ - #XYP_+ # X,

//-\\ /*\

y . r "
- VEV hastwo contr.: | = eyp_yy_ - # X ep_yp_ — Vacuum current (usually =0)
+ # X ey, — Intraband current

+ # x Re[e,y¥_] — Interband current

- Different time dynamical phases: ¥, o e¥i™¢

= Interband current has the fastest time dependence « e*21™mt

= the source of high harmonics !

NB: same idea in solid-state HHG [vampa et al., (2014)]



Semi-classical analysis (2/3)

More quantitative argument: Intermediate particle picture + Semi-classical analysis
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More quantitative argument: Intermediate particle picture + Semi-classical analysis

Step 1: Introduce an intermediate particle picture

- Identify 1, as the instantaneous solutions to the Dirac eq.

Po(t) = a(t) X Y_(O) + B(O) X Py (6) where Hpygaetps= £ |m2 + (p-+ “Eosin 0c) s = Byipy (3 hy oc o1 452)




Semi-classical analysis (2/3)

More quantitative argument: Intermediate particle picture + Semi-classical analysis

Step 1: Introduce an intermediate particle picture

- Identify 1, as the instantaneous solutions to the Dirac eq.

Po(t) = a(t) X Y_(O) + B(O) X Py (6) where Hpygaetps= £ |m2 + (p-+ “Eosin 0c) s = Byipy (3 hy oc o1 452)

Step 2: Solve the evolution egs. for the Bogoliubov coefficients a &

- The evol. egs. for ¥y and ;. are known = can write down evol. eq. for a & f8

- Complicated = Not exactly solvable but analytically with some approx.
= semi-classical method [Dumiu, Dunne (2010)] [HT et al. (2020)]

Figure stolen from [Shevchenko, Ashhab, Nori (2010)]
Pﬁ ﬁ A Ew
&

} -
; LS t +2
-400 -200 0 200 400 2 t{ _TU’UJ

t
(1) Periodic jumps w/ freq. Q < Pair production occurs periodically at around the minimum gap

—i) dtE
Yy xe J deE,

1812

\1/)_ o e+ifth_

E ¢

-

(2) p does not increase monotonically but oscillates
< Quantum interference among pair productions (Stuckelberg-phase effect)

= max f when most constructive < 2nZ 3 E, — E_ x eE,/Q = determine harmonic intensity



Semi-classical analysis (3/3)

More quantitative argument: Intermediate particle picture + Semi-classical analysis

Step 3: Calculate intra- and inter-band currents

E(E) < J() = Jintra(t) + Jinter () — a(t)ﬂ(t)el/j+ (O (£) ~ ,B(t)e+2if dt\/m2+(p+e% sin Qt)z
\ ~ |B@®) e, (D, (t) ~ [B®)I?

= E(w) ¢ J(@) = Jintra(@) + Jinter (@)

. _ +2if dt\/m2+(p+% sin Qt)z
~ [dt e 1 @tB(t)|? + [ dt e7I®t B(t)e

+2if dt\/m2+(p+% sin Qt)

/

2

~|BI1?8(w — Q) + B[ dt e @t e
“

e

2 2

can be non-negligible only if 2 minsz + (p + %Eosin Qt) < w<2 mamez + (p + e—g"sin Qt)

=2m < w < 2eE,/Q = determine the plateau and the cutoff



Semi-classical lessons v.s. numerics

Lessons from semi-classical analysis:

« Harmonic intensity oscillates with E, due to quantum interference of the pair production

« High harmonics originate from the interband current, as it is very fast Jiper e*2/ dtJm“(”*%s"‘ )
* Cutofflawmin (E, —E_) < w <max (E, —E_) = 2m < w < 2eE,/Q

NB: Time dependence of the driving field is crucial; otherwise, no interference and no plateau



Semi-classical lessons v.s. numerics

Lessons from semi-classical analysis:

« Harmonic intensity oscillates with E, due to quantum interference of the pair production

« High harmonics originate from the interband current, as it is very fast Jiper e*2/ dtJ’"“(”*%s"‘ )
* Cutofflawmin (E, —E_) < w <max (E, —E_) = 2m < w < 2eE,/Q

NB: Time dependence of the driving field is crucial; otherwise, no interference and no plateau

All of those lessons are consistent with numerics!
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Summary

Discuss vacuum high-harmonic generation (HHG) in strong-field QED

Harmonic spectrum for £2 = 0.3, 2-01
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Take-home messages: Harmonic order w/Q

* Vacuum HHG surely occurs and semi-classical analysis can explain the basic features
(e.g., cutoff law)
* Physics: Interband current induced by the Schwinger effect and
quantum interference of the Schwinger effect are the essence

NB
NB:

: Very preliminary, so comments/criticisms are welcome !
This work is an extension of my previous work for 2d Dirac material [HT, Hongo, Ikeda (2021)]
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