Initial state and and early-time dynamics

Hidetoshi Taya

Keio University

Sep. 7th @ Initial Stages 2025

What I'm going to talk ...

What I'm going to talk ...

Early-time dynamics of HIC contains rich & important physics

- gluon saturation (color glass condensate)
- strong color field (glasma)
- strong EM field
- strong vorticity

> origin of the QGP in HIC

provide opportunity to study "new physics"

• ...

What I'm going to talk ...

Early-time dynamics of HIC contains rich & important physics

- gluon saturation (color glass condensate)
- strong color field (glasma)

origin of the QGP in HIC

- strong EM field
- strong vorticity

provide opportunity to study "new physics"

• ...

■ & **■** : Relatively well understood ⇒ "standard model"

■ & **■** : Relatively well understood ⇒ "standard model"

Exp: Deep-inelastic scattering (DIS)

+ Global fit of many obs: Jets, Drell-Yan, ...

(will be explored further in EIC)

■ & **■** : Relatively well understood ⇒ "standard model"

■ & **■** : Relatively well understood **⇒** "standard model"

Exp: Lots of data from A+A

& ■ : Relatively well understood ⇒ "standard model"

Exp: Lots of data from A+A

elliptic flow

1/N_{Trigger} dN/d(∆♦)

STAR PRL 91 (2003) 072304

PRL97 (2006) 162301

& ■ : Relatively well understood ⇒ "standard model"

Exp: Lots of data from A+A

PRL91, 182301 (2003)

p+p min. bias

Au+Au Central

PHENIX

d+Au FTPC-Au 0-20%

- elliptic flow
- jet quenching

& ■ : Relatively well understood ⇒ "standard model"

Exp: Lots of data from A+A

- elliptic flow
- jet quenching
- quark # scaling

■ & **■** : Relatively well understood ⇒ "standard model"

Exp: Lots of data from A+A

- jet quenching
- quark # scaling
- thermal photon

& ■ : Relatively well understood ⇒ "standard model"

■ & **■** : Relatively well understood ⇒ "standard model"

- **■** & **■** : Relatively well understood ⇒ "standard model"
- : No established understanding
- A longstanding issue from 1980s [Bjorken (1983)]
- Many open questions; e.g.,
 - Particle production: how the huge # of quarks & gluons produced dN/dy=O(1000)?
 - Thermalization ("hydrodynamization"): how thermalize to form the liquid-like QGP? how can it be fast ~ 1fm/c?
 - Input for hydro: a must for better modeling and extraction of QGP properties
 - Experimental probes
- Had significant progress in the last decade!

Key: Strong color field (glasma)

Key: Strong color field (glasma)

High-energy nucleus = a dense gluon state ≈ a "color capacitor plate"

Non-linearity of gluon \Rightarrow huge gluon density of order $\sigma \propto Q_s^2 = O(1 \text{ GeV}^2)$

Key: Strong color field (glasma)

Formation of a "colored capacitor" ⇒ Strong color field (:= glasma)

Key features of glasma:

- (1) Longitudinal color fields
- (2) Topological $\mathbf{E} \cdot \mathbf{B} \neq 0$ (: div $\mathbf{B} \neq 0$ in QCD)
- (3) Very strong: $g\mathbf{E}$, $g\mathbf{B} \propto \sigma \propto Q_s^2 = O(1 \text{ GeV}^2)$
- (4) Very anisotropic and never isotropitized

Various scenarios:

Reviews: [Fukushima 1603.02340] [Schlichting, Teaney 1908.02113] [Berges et al. 2005.12299] [Gelis 2102.07604] ...

- Strong-field scenario: instabilities of glasma
- Weak-coupling (particle-picture) scenario: kinetic description (bottom-up picture) + "hydrodynamization"
- Strong-coupling scenario: AdS/CFT

Various scenarios:

Reviews: [Fukushima 1603.02340] [Schlichting, Teaney 1908.02113] [Berges et al. 2005.12299] [Gelis 2102.07604] ...

- Strong-field scenario: instabilities of glasma
- Weak-coupling (particle-picture) scenario: kinetic description (bottom-up picture) + "hydrodynamization"
- Strong-coupling scenario: AdS/CFT

Various scenarios:

Reviews: [Fukushima 1603.02340] [Schlichting, Teaney 1908.02113] [Berges et al. 2005.12299] [Gelis 2102.07604] ...

- Strong-field scenario: instabilities of glasma
- Weak-coupling (particle-picture) scenario: kinetic description (bottom-up picture) + "hydrodynamization"
- Strong-coupling scenario: AdS/CFT

Glasma is unstable ⇒ decays & isotropitizes spontaneously

both magnetic B- and electric E-fields can induce instabilities

Glasma is unstable ⇒ decays & isotropitizes spontaneously

both magnetic B- and electric E-fields can induce instabilities

•	Especially	important for	isotropization
---	-------------------	---------------	----------------

 \Rightarrow B-field instabilities enhance the long. fluct. to relax the anisotropy

Glasma is unstable ⇒ decays & isotropitizes spontaneously

both magnetic B- and electric E-fields can induce instabilities

- Especially important for isotropization
 - ⇒ B-field instabilities enhance the long. fluct. to relax the anisotropy
- Microscopically, two mechanisms:

Soft B-field flct + hard particle

Positive feedback!

Nielesen-Olesen instability

[Fujii, Itakura, Iwasaki (2008)]

Glasma is unstable ⇒ decays & isotropitizes spontaneously

both magnetic B- and electric E-fields can induce instabilities

- Especially important for isotropization
 - ⇒ B-field instabilities enhance the long. fluct. to relax the anisotropy
- Microscopically, two mechanisms:

Weibel instability Review: [Mrowczynski, Schenke, Strickland (2017)]

Nielesen-Olesen instability

- Can be studied numerically [Romatschke, Venugopalan (2006)]
 - \Rightarrow It exists, but so slow (~ $100/Q_s > 20 \text{ fm/}c$)
 - ⇒ could play some role but would not be the essence (within the current understanding)

[Fujii, Itakura, Iwasaki (2008)]

Glasma is unstable ⇒ decays & isotropitizes spontaneously

both magnetic B- and electric E-fields can induce instabilities

Glasma is unstable ⇒ decays & isotropitizes spontaneously

both magnetic B- and electric E-fields can induce instabilities

- Especially important for particle (quark) production
- Mechanism: the Schwinger effect [Gelis, Kajantie, Lappi, hep-th/049508 & 0508229] [Gelfand, Hebenstreit, Berges, 1601.03576][HT, 1609.06189] [Tanji, Berges, 1711.03445]

E field supplies energy to tear the loop apart \Rightarrow pair particle production!

Glasma is unstable ⇒ decays & isotropitizes spontaneously

both magnetic B- and electric E-fields can induce instabilities

- Especially important for particle (quark) production
- Mechanism: the Schwinger effect [Gelis, Kajantie, Lappi, hep-th/049508 & 0508229] [Gelfand, Hebenstreit, Berges, 1601.03576][HT, 1609.06189] [Tanji, Berges, 1711.03445]

<u>Our vacuum = full of quantum fluct.</u>

E field supplies energy to tear the loop apart \Rightarrow pair particle production!

- Can be studied numerically
 - ⇒ Very fast & huge quark production

$$\therefore \tau \sim \frac{m}{gE} \sim \frac{m}{Q_S^2} \ll Q_S^{-1} \sim 0.1 \text{ fm/}c$$

 \Rightarrow would be important for chemical eq.

Various scenarios:

Reviews: [Fukushima 1603.02340] [Schlichting, Teaney 1908.02113] [Berges et al. 2005.12299] [Gelis 2102.07604] ...

- Strong-field scenario: instabilities of glasma
- Weak-coupling (particle-picture) scenario: kinetic description (bottom-up picture) + "hydrodynamization"
- Strong-coupling scenario: AdS/CFT

Short summary so far

QGP formation in early-time dynamics of HIC

= a longstanding issue in HIC but had/having lots of progress

Key ideas explained

- The very first stage is described by glasma
- Glasma is unstable (Weibel instability, Nielesen-Olesen instability, Schwinger effect)
- Nice development in the weak-coupling scenario
- Hydrodynamization: applicability of hydro ≠ local thermal equilibrium

What I'm going to talk ...

Early-time dynamics of HIC contains rich & important physics

- gluon saturation (color glass condensate)
- strong color field (glasma)

origin of the QGP in HIC

- strong EM field
- strong vorticity

provide opportunity to study "new physics"

• ...

Why strong field interesting?

A general lesson from life:

⇒ Translate to physics:
Must go to **dis**comfort zone
(= **extreme conditions**) to
discover something new!

HIC is the best way to go there. Because it creates:

- **Hottest matter** ⇒ QGP: the origin of our Universe and matter
- **Densest matter** ⇒ QCD at finite density: fate of our Universe and matter FAIR, NICA, HIAF, J-PARC-HI, ...
- Strongest EM and vorticity fields ⇒ ???

How strong EM & vorticity field produced?

Idea is simple

Energetic ⇒ large "rotating" velocity/current ⇒ strong vorticity/magnetic field

We should then ask:

- (1) How strong are they quantitatively?
- (2) What can happen?

EM field: How strong?

Estimates by event generators (e.g., HIJING, UrQMD, JAM, ...)

[Deng, Huang (2012)] (see also [Bzdak, Skokov (2012)] [Hattori, Huang (2016)])

Pros: Very strong $eB \gg \Lambda_{\rm QCD}^2$

⇒ Strongest in the Universe!

Cons: Extremely short-lived $\tau \ll 0.1 \text{ fm/}c$

- very bad news, as it would reduce the signals significantly
- BUT, could be prolonged by finite conductivity (Faraday induction)

Theoretical essence: Non-perturbative dress of the propagator

Vacuum

Theoretical essence: Non-perturbative dress of the propagator

Vacuum

Weak field ($eF/m^2 \ll 1$)

Strong field ($eF/m^2 \gg 1$)

Theoretical essence: Non-perturbative dress of the propagator

Vacuum

Weak field ($eF/m^2 \ll 1$)

Strong field ($eF/m^2 \gg 1$)

Perturbative

⇒ well understood both theoretically & experimentally

e.g., Electron anomalous magnetic moment

$$\alpha^{-1}$$
(theor.) = 137.03599914 ... α^{-1} (exp.) = 137.03599899 ...

[Aoyama, Kinoshta, Nio (2017)]

Theoretical essence: Non-perturbative dress of the propagator

Vacuum

Weak field ($eF/m^2 \ll 1$)

Strong field ($eF/m^2 \gg 1$)

Perturbative

⇒ well understood both theoretically & experimentally

Non-linear/perturbative

- ⇒ beyond the pert. paradigm
- ⇒ "new physics"

e.g., Electron anomalous magnetic moment

$$\alpha^{-1}$$
(theor.) = 137.03599914 ... α^{-1} (exp.) = 137.03599899 ...

[Aoyama, Kinoshta, Nio (2017)]

Lots theoretical predictions!

Examples

Novel QED processes

Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson, 2203.00019]

ex 1) Schwinger effect

ex 2) Photon splitting ex 3) vacuum birefringence

Also affect QCD/hadron physics

Review: [Hattori, Itakura, Ozaki, 2305.03865]

- ex 1) Hadron properties
 - \Rightarrow mass, form factor, decay rate, ...
- ex 2) QCD phase diagram
 - ⇒ novel phase, (inverse) magnetic catalysis, ...
- ex 3) Anomalous transport (or non-equilibrium processes in general)
 - ⇒ chiral magnetic effect (CME) = current driven by B field under chirality imbalance chiral magnetic wave, chiral plasma instability, ...
- Too many, so, don't explain them in detail
- Just remember: most of them are unobserved ⇒ exp. search is an active topic (i.e., this conference!)

Vorticity: How strong?

Again, can be estimated by event generators

Pros: $\omega \sim 10^{21} \mathrm{Hz}$

⇒ Fastest in the Universe!

Cons: "weak" in the unit of eV: $\omega = O(10 \text{ MeV})$

BUT, is relatively long-lived $O(5 \text{ fm/}c) \Rightarrow \text{may leave signals of order } \frac{\omega}{T} \sim 1\%$

Vorticity: What can happen? (1/2)

Spin & chirality physics have been discussed in the community

ex 1) Spin polarization via spin-vorticity coupling [Liang, Wang (2004)]

 $E \rightarrow E - \omega \cdot s$: A vorticity analog of the magnetic Zeeman effect $\delta E \propto q B \cdot s$

 \Rightarrow Spin alignment along ω (analog of the Barnett effect for magnetization)

ex 2) Anomalous transport

chiral vortical effect (CVE): $J \propto \omega \Leftarrow$ A vorticity analog of CME $J \propto B$

Vorticity: What can happen? (2/2)

Exp. observation of spin polarization

[STAR (2017)] (Recent review [Niida, Voloshin (2024)])

- As expected, $O(1\%) = \omega/T$ signals are seen and is consistent w/ theory
- Current trend: study the local structure of the spin pol. (e.g., azimuthal dist.)
 - ⇒ sometimes appear in tension w/ theory (more on this conference!)

Short summary of the last part

HIC creates the strongest EM and vorticity fields ever

= can be used as a unique tool to study "new physics"

Key ideas explained

- Pros and cons:
 - EM field is strong $eB \gg \Lambda_{\rm QCD}^2$ but is short-lived $\tau \ll 0.1$ fm/c (if no conductivity) Vorticity is not so strong $\omega \sim 10$ MeV but is long-lived $\tau \sim 5$ fm/c
- Many phenomena proposed and are actively searched in experiments e.g., spin polarization of Λ hyperons

Summary

Early-time dynamics of HIC contains rich & important physics

- gluon saturation (color glass condensate)
- strong color field (glasma)
- strong EM field
- strong vorticity

> origin of the QGP in HIC

provide opportunity to study "new physics"

• ...