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Before collision Collision Hadron gas
0 fm/c ~1 fm/c ~10 fm/c

B & M : Relatively well understood = “standard model”

Exp: Deep-inelastic scattering (DIS)
+ Global fit of many obs: Jets, Drell-Yan, ...

(will be explored further in EIC)

1.2 MSHT20NNLO, @ =10GeVZ
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Before collision Collision Hadron gas
0 fm/c ~1 fm/c ~10 fm/c

B & M : Relatively well understood = “standard model”

* QGP created

(=: matter composed of deconfined
quark & gluons)

* Dense gluon state

-1 * QGP is a (nearly) perfect liquid

* Theory: perturbative QCD

cf. Color Glass Condensate
(CGC) framework at x->0

* Theory: Hydrodynamics
(+ hadron transport)




What is the issue of B ? = A big missing link in HIC
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Before collision Collision Hadron gas
0 fm/c ~1 fm/c ~10 fm/c

B & M : Relatively well understood = “standard model”

M : No established understanding
« Alongstanding issue from 1980s (gjorken (1983)
- Many open questions; e.g.,

- Particle production:
how the huge # of quarks & gluons produced dN/dy=0(1000) ?

- Thermalization (“hydrodynamization”):
how thermalize to form the liquid-like QGP? how can it be fast ~ 1fm/c?

- Input for hydro: a must for better modeling and extraction of QGP properties
- Experimental probes
- Had significant progress in the last decade !
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Key: Strong color field (glasma)

e

Collision Hadron gas
~10 fm/c

Non-linearity of gluon = huge gluon density of order o < Q2 = 0(1 GeV?)

N saturation scale
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Key: Strong color field (glasma)
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Before collision Hadron gas  [Lappi, McLerran (2006)]

=

Solve classical
Yang-Mills eq.

color EM field strength

Key features of glasma:

(1) Longitudinal color fields 0 ol
(2) Topological E-B # 0 (*." divB # 0in QCD) g

(3) Very strong: gE,gB x o < Q% = 0(1 GeV?) \/ =

0 0.5 1 1.5 2 2.5 3
unitin Q; = 0(1 GeV)

(4) Very anisotropic and never isotropitized




How QGP created = how glasma decays into QGP

Various scenarios:

Reviews: [Fukushima 1603.02340] [Schlichting, Teaney 1908.02113] [Berges et al. 2005.12299] [Gelis 2102.07604] ...

may roughly be categorized into 3 scenarios

- Strong-field scenario: instabilities of glasma

- Weak-coupling (particle-picture) scenario:
kinetic description (bottom-up picture) + “hydrodynamization”

- Strong-coupling scenario: AdS/CFT
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Various scenarios:

Reviews: [Fukushima 1603.02340] [Schlichting, Teaney 1908.02113] [Berges et al. 2005.12299] [Gelis 2102.07604] ...

may roughly be categorized into 3 scenarios

* Weak-coupling (particle-picture) scenario:
kinetic description (bottom-up picture) + “hydrodynamization”
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Strong-field scenario: glasma instabilities (1/2)

Glasma is unstable = decays & isotropitizes spontaneously
both magnetic B- and electric E-fields can induce instabilities

* Especially important for isotropization
= B-field instabilities enhance the long. fluct. to relax the anisotropy

* Microscopically, two mechanisms: Uil leakura, Iwasak! (2008)]
Weibel instability i - Nielesen-Olesen instability

[Mrowczynski, Schenke, Strickland (2017)]
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Glasma is unstable = decays & isotropitizes spontaneously
both magnetic B- and electric E-fields can induce instabilities

* Especially important for isotropization
= B-field instabilities enhance the long. fluct. to relax the anisotropy

* Microscopically, two mechanisms: Uil leakura, Iwasak! (2008)]
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e Can be studied numerica"y [Romatschke, Venugopalan (2006)]
= It exists, but so slow (~ 100/Q, > 20 fm/c)

= could play some role
but would not be the essence (within the current understanding) | ]
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Glasma is unstable = decays & isotropitizes spontaneously
both magnetic B- and electric E-fields can induce instabilities

 Especially important for particle (quark) production




Strong-field scenario: glasma instabilities (2/2)

Glasma is unstable = decays & isotropitizes spontaneously
both magnetic B- and electric E-fields can induce instabilities

* Especially important for particle (quark) production

[Gelis, Kajantie, Lappi, hep-th/049508 & 0508229]

¢ M eCha n ism: the SChWi nger EffECt [Gelfand, Hebenstreit, Berges, 1601.03576][HT, 1609.06189] [Tanji, Berges, 1711.03445]

Our vacuum = full of quantum fluct. In strong E field

E field supplies energy to tear the loop apart = pair particle production !




Strong-field scenario: glasma instabilities (2/2)

Glasma is unstable = decays & isotropitizes spontaneously
both magnetic B- and electric E-fields can induce instabilities

* Especially important for particle (quark) production

[Gelis, Kajantie, Lappi, hep-th/049508 & 0508229]

¢ M eCha n ism: the SChWi nger EffeCt [Gelfand, Hebenstreit, Berges, 1601.03576][HT, 1609.06189] [Tanji, Berges, 1711.03445]

Our vacuum = full of quantum fluct. In strong E field

E field supplies energy to tear the loop apart = pair particle production !

* Can be studied numerically [Mhattice —_[Tan, Berges, 1710342801

kinetic = = -

= Very fast & huge quark production

m m

~—~ — -1 .
T~ F 2 K Qg 0.1fm/c

.
)_ L
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).

0 ;
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= would be important for chemical eq.
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How QGP created = how glasma decays into QGP

Various scenarios:

Reviews: [Fukushima 1603.02340] [Schlichting, Teaney 1908.02113] [Berges et al. 2005.12299] [Gelis 2102.07604] ...

may roughly be categorized into 3 scenarios

« Strong-field scenario: instabilities of glasma
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Ofm/c 1/0

1 2

i g collision % _.

Pgluon = O Q3 1 GeV

Dense gluon state
= pQCD (CGC at x—0)

+ Go to free streaming = Never thermalize
Strong color,... Bl - Expansion = need to switch “field” — “particle”

= Classical YM (+ fl

Quark-gluon plasma

= Hydrodynamics




Weak-coupling scenario: particle + hydrodynamization

0 fm/c 1/Qs = O(0.1fm/c) O(1 fm/c) time

Occupancy Ny, 4
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Weak-coupling scenario: particle + hydrodynamization

0fm/c 1/Qs = O(0.1fm/c) O(1 fm/c) time
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[Kurkela, Zhu, 1506.06647]
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* Kinetic theory of QCD (AMY)
does describe isotropization & thermalization

- BUT, the time scale is too slow 7~ 10 fm/c ark-gluon plasma

P Hydrodynamics



Weak-coupling scenario: particle + hydrodynamization

0 fm/c 1/Qs = O(0.1fm/c) O(1 fm/c) time

t[fm/c]
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collision

Diluted by expansion ‘ (
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o
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— — st order hydro |]
= 2nd order hydro

Dense gluon state
= pQCD (CGC at x—0)

. 43 8/3
Components of T T’:/Q

Strong color fluxt
= Classical YM (+

+ Hydrodynamics works even away from thermal
equilibrium = “hydrodynamization”

* Thydro < Ttherm.: Thydro ~ 0(1) fm/c

Juark-gluon plasma

®» Hydrodynamics
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0 fm/c 1/Qs = O(0.1fm/c) O(1 fm/c) time

collision Diluted by expansion

“Hydrodynamize”

Pgluon = O Q3 1 GeV

Dense gluon state
= pQCD (CGC at x—0)

Strong color flux tube
= Classical YM (+ fluc

rton matte
» kinetic the

Quark-gluon plasma

= Hydrodynamics



Short summary so far

QGP formation in early-time dynamics of HIC

= a longstanding issue in HIC but had/having lots of progress
Key ideas explained

- The very first stage is described by glasma

- Glasma is unstable (Weibel instability, Nielesen-Olesen instability, Schwinger effect)
* Nice development in the weak-coupling scenario

- Hydrodynamization: applicability of hydro # local thermal equilibrium
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Why strong field interesting ?

A general lesson from life:

= Translate to physics:

Life begins at the end of your Must go to discomfort zone
comfort zone. -
(= extreme conditions) to
— Neale Denald ({)alsch — d iSCOVG I SO meth | ng new '

HIC is the best way to go there. Because it creates:

* Hottest matter = QGP: the origin of our Universe and matter

RHIC, LHC

* Densest matter = QCD at finite density: fate of our Universe and matter

FAIR, NICA, HIAF, J-PARC-HI, ...

 Strongest EM and vorticity fields = 77?7



How strong EM & vorticity field produced ?

Idea is simple
Energetic = large “rotating” velocity/current = strong vorticity/magnetic field

We should then ask:

(1) How strong are they quantitatively?
(2) What can happen?




EM field: How strong ?

Estimates by event generators (e.g., HIJING, UrQMD, JAM, ...)

[Deng, Huang (2012)] (see also [Bzdak, Skokov (2012)] [Hattori, Huang (2016)])

100 . . .
— -B, Pb+Pb
~ K L L} e 1B, \/S_=2?6TEV1
; ; wivie | [ B b=10fm
= = 0.01; ---- |5 - .
=] S
S S
& o 1074 v 1
==
0204 =02 00 02 04
t(fm/c)
2 LED Laser welding NDF_}EZET;S?:)MS Gujl:}ess“.re‘c‘.c?rd Magnetar Heavy-ion collisions
Pros: Very strong eB > Ajcp
= Strongest in the Universe! v

eE,eB ~ (1073eV)?  ~ (1071eV)?

Cons: Extremely short-lived 7 « 0.1 fm/c
- very bad news, as it would reduce the signals significantly
- BUT, could be prolonged by finite conductivity (Faraday induction)
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EM field: What can happen ? (1/2)

Theoretical essence: Non-perturbative dress of the propagator

initial final

Vacuum field (eF/m? « 1) Strong field (eF/m? > 1)

Perturbative

= well understood
both theoretically
& experimentally

e.g., Electron anomalous magnetic moment

a~1(theor.) = 137.03599914 ...
a l(exp.) = 137.03599899 ...

[Aoyama, Kinoshta, Nio (2017)]



EM field: What can happen ? (1/2)

Theoretical essence: Non-perturbative dress of the propagator

initial final

Vacuum field (eF/m?* « 1) Strong field (eF/m? > 1)
Perturbative Non-linear/perturbative
= well understood = beyond the pert. paradigm

both theoretically

. = “new physics”
& experimentally

e.g., Electron anomalous magnetic moment

a~1(theor.) = 137.03599914 ...
a l(exp.) = 137.03599899 ...

[Aoyama, Kinoshta, Nio (2017)]



EM field: What can happen ? (2/2)

Lots theoretical predictions !
- Examples

Novel QED processes Review: [Fedotoy, llderton, Karbstein, King, Seipt, HT, Torgrimsson, 2203.00019]
ex 1) Schwinger effect ex 2) Photon splitting ex 3) vacuum birefringence

Q. O

Also affect QCD/hadron physicS Rreview: [Hattori, Itakura, Ozaki, 2305.03865]

ex 1) Hadron properties
= mass, form factor, decay rate, ...

ex 2) QCD phase diagram
= novel phase, (inverse) magnetic catalysis, ...

ex 3) Anomalous transport (or non-equilibrium processes in general) |
= chiral magnetic effect (CME) = current driven by B field under chirality imbalance |
chiral magnetic wave, chiral plasma instability, ...

- Too many, so, don't explain them in detail

* Just remember: most of them are unobserved = exp. search is an active topic
(i.e., this conference!)



Vorticity: How strong ?

Again, can be estimated by event generators

Time dependence Courtesy of X.-G. Huang Ener‘gy dependence

i | "'
a 0081 ™, kinematic vorticity
0.06) '™ Au+AU, N=0, b=7 fm $ L
st B g iuavp Y L
T.E N F;oots ‘ ‘\\
o A 62 GeV 3 0.04; .
3 | ’ Y g Au + Au, n=0 \‘HIJING
¥ 003/ 200 GeV 002 } b=10 fm o
0.02/ e
: 0.00
0.01/ 5 10 50 100 5001000 5000
0 T2 —— 6 8 Vs (Gev)
\ J \ J
- v v

AMPT (Jiang-Lin-Liao PRC2016)
Deng-XGH-Ma-Zhang PRC2020 Deng-XGH PRC2016

Pros: w ~ 10%1Hz
= Fastest in the Universe ! | sy,

10 1Hz

Cons: “weak” in the unit of eV: w = 0(10 MeV)

BUT, is relatively long-lived 0(5 fm/c) = may leave signals of order% ~1%



Vorticity: What can happen ? (1/2)

Spin & chirality physics have been discussed in the community

ex 1) Spin polarization via spin-vorticity coupling [Liang, wang (2004)]
E - E — w-s: Avorticity analog of the magnetic Zeeman effect 6E < qB - s
= Spin alignment along w (analog of the Barnett effect for magnetization)

Courtesy of M. Matsuo

ex 2) Anomalous transport
chiral vortical effect (CVE): J « w < A vorticity analog of CME J < B



Vorticity: What can happen ? (2/2)

. . . . [STAR (2017)]
EXp. Observat|0n Of Spln pOIarlzatlon (Recent review [Niida, Voloshin (2024)])

| STARAu+Au 200 GeV A, 200 GeV
- — - viscous hydro
Q ¥A ¥R
1 _—
STAR Au+Au 3 GeV I:
0 A (x0.1)

-
05

18

0 1 1 20 1 1 1 40 1 1 1 60 1 1 1 80 1
Centrality (%)

* As expected, O(1%) = w/T signals are seen and is consistent w/ theory

* Current trend: study the local structure of the spin pol. (e.g., azimuthal dist.)

= sometimes appear in tension w/ theory (more on this conference !)



Short summary of the last part

HIC creates the strongest EM and vorticity fields ever

= can be used as a unique tool to study “new physics”

Key ideas explained

* Pros and cons:

EM field is strong eB » Ajcp but is short-lived 7 « 0.1 fm/c (if no conductivity)
Vorticity is not so strong w~10 MeV but is long-lived t ~ 5 fm/c

- Many phenomena proposed and are actively searched in experiments
e.g., spin polarization of A hyperons
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Early-time dynamics of HIC contains rich & important physics

- gluon saturation (color glass condensate)
- strong color field (glasma)

- strong EM field
- strong vorticity

} origin of the QGP in HIC

} provide opportunity to study “new physics”



