Physical conditions in intermediate-energy heavy-ion collisions: Estimates from JAM

Hidetoshi Taya (Keio U.)

Based on: [HT, Nishimura, Ohnishi, 2402.17136]

[HT, Jinno, Kitazawa, Nara, 2409.07685]

[HT, 2501.18171]

Plan of the talk

Messages:

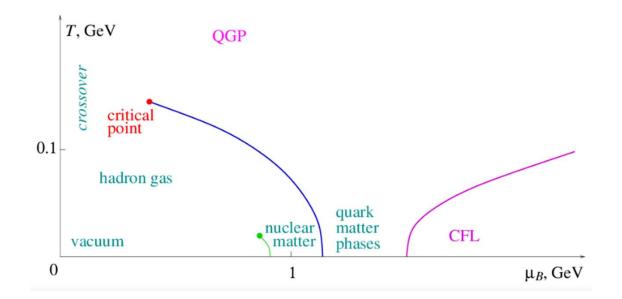
- (1) What is the BEST energy range to study high baryon-density physics ? $\Rightarrow \sqrt{s_{NN}} = 3 \sim 5 \text{ GeV}$
- (2) Such an intermediate-energy regime is also EXTREMELY interesting for studying physics of strong electromagnetic field

Contents:

- 1. Introduction: High-density QCD and intermediate-energy HIC
- 2. Best energy range for high density physics
- 3. Strong EM field
- 4. Summary

Plan of the talk

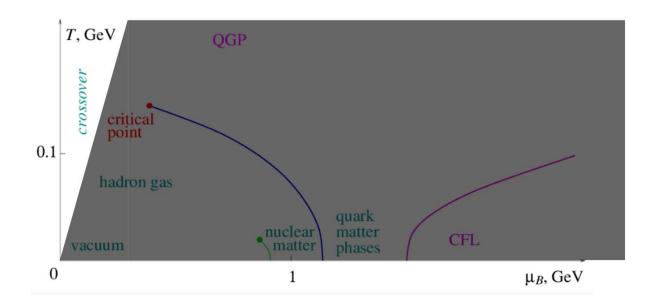
Messages:


- (1) What is the BEST energy range to study high baryon-density physics ? $\Rightarrow \sqrt{s_{NN}} = 3 \sim 5 \text{ GeV}$
- (2) Such an intermediate-energy regime is also EXTREMELY interesting for studying physics of strong electromagnetic field

Contents:

- 1. Introduction: High-density QCD and intermediate-energy HIC
- 2. Best energy range for high density physics
- 3. Strong EM field
- 4. Summary

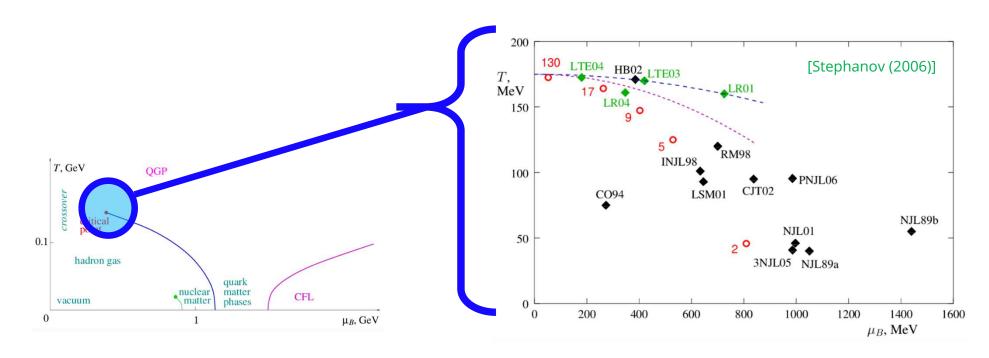
Q: Matter under extreme condition


- **✓** Conditions: Temperature, density, ...
- ✓ Current expectation: QCD phase diagram

[Stephanov (2006)]

Q: Matter under extreme condition

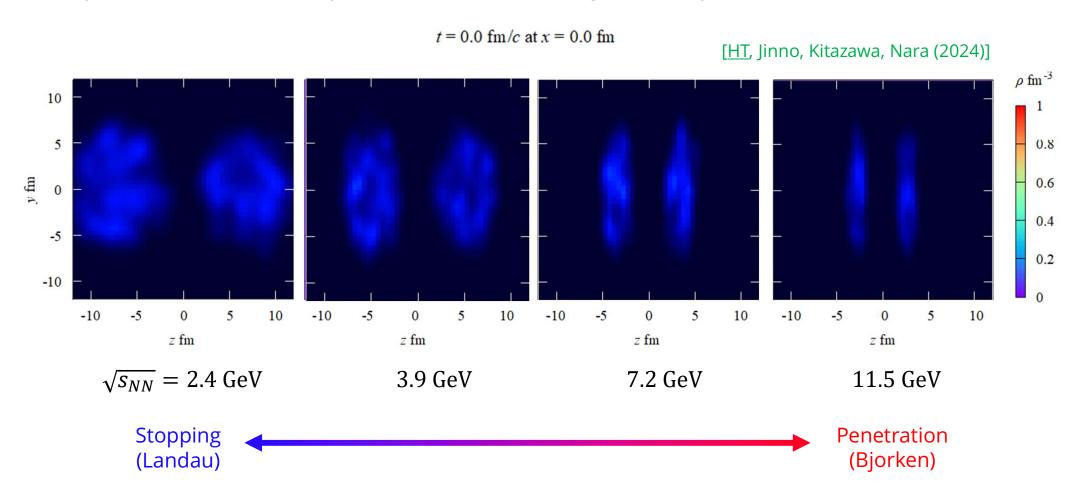
- ✓ Conditions: Temperature, density, ...
- ✓ Current expectation: QCD phase diagram



[Stephanov (2006)]

- Certain for the left (low density region)
 ← theory: lattice QCD exp.: high-energy heavy-ion coll.
- Huge uncertainties in the right (high density region) [See also Yamamoto's talk]
 ⇒ need exp. Inputs: intermediate-energy heavy-ion collisions

Q: Matter under extreme condition

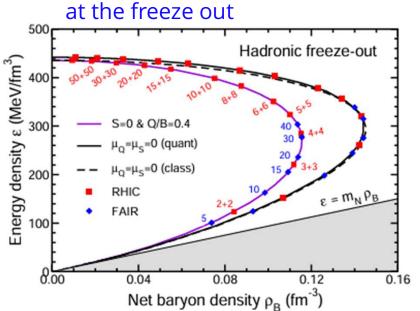

- ✓ Conditions: Temperature, density, ...
- ✓ Current expectation: QCD phase diagram

- Certain for the left (low density region)
 ← theory: lattice QCD exp.: high-energy heavy-ion coll.
- Huge uncertainties in the right (high density region) [See also Yamamoto's talk]
 ⇒ need exp. Inputs: intermediate-energy heavy-ion collisions

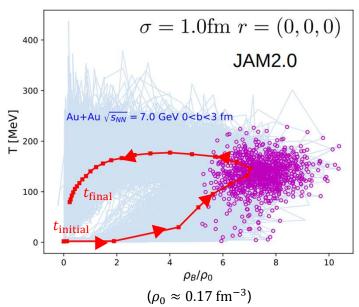
Intermediate-energy HIC

✓ Heavy-ion collisions at $\sqrt{s_{NN}} = O(2 - 10 \text{ GeV})$ [AGS, SPS, RHIC BES, FAIR, NICA, HIAF, J-PARC-HI, ...] expected to be the only means to create "high density matter" in lab.

Idea: baryon stopping at lower energies ⇒ dense matter [See also Wolf's talk]


Contents

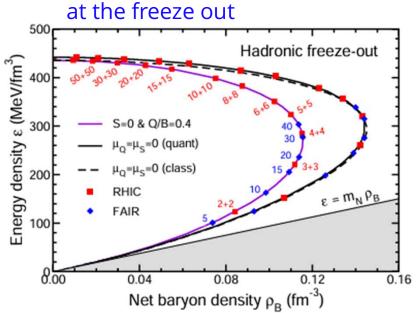
- 1. Introduction: High-density QCD and intermediate-energy HIC
- 2. Best energy range for high density physics
- 3. Strong EM field
- 4. Summary


Preceding thy. work on intermediate-energy HIC

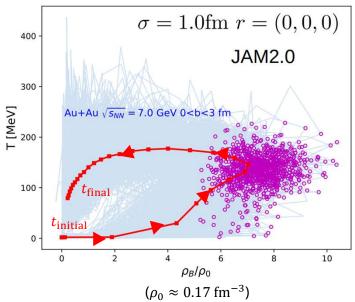
✓ There exist many but highlight two:

- Statistical model: [Randrup, Cleymans (2006)]
 - ⇒ estimate from exp. particle yields

- Transport model: "Ohnishi plot" by A. Ohnishi (~2010)
 - ⇒ time evolution of density (at the center cell)



- \Rightarrow the best energy range seems to be $\sqrt{s_{NN}} = 6 \sim 10 \text{ GeV}$
 - high density $\rho = (6 \sim 10) \times \rho_0$ can be realized


Preceding thy. work on intermediate-energy HIC

✓ There exist many but highlight two:

- Statistical model: [Randrup, Cleymans (2006)]
 - ⇒ estimate from exp. particle yields

- Transport model: "Ohnishi plot" by A. Ohnishi (~2010)
 - ⇒ time evolution of density (at the center cell)

- \Rightarrow the best energy range seems to be $\sqrt{s_{NN}} = 6 \sim 10 \text{ GeV}$
 - high density $\rho = (6 \sim 10) \times \rho_0$ can be realized

✓ Problem: Volume of the dense region?

⇒ Purpose:

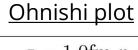
- can the dense region have sufficiently large volume?
- what is the best energy to simultaneously maximize density & volume?

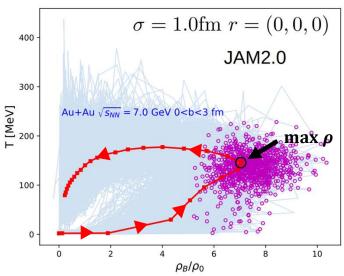
Method

✓ Microscopic transport model: JAM (Jet AA Microscopic transport model)

[Nara, Otsuka, Ohnishi, Nitta, Chiba (2000)]

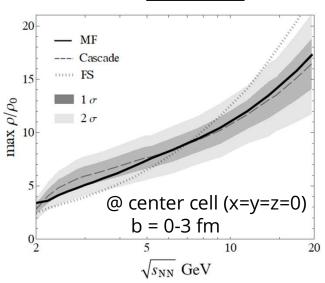
- A successful model to simulate the realtime dynamics of heavy-ion collisions, reproducing various data (v1, yields, ...)
- Basic idea: superposition of collisions of individual hadrons (incl. inelastic ones such as resonance, string breaking, mini-jet)
- Anyway, the phase-space of each hadron (x_i^{μ}, p_i^{μ}) can be obtained
 - ⇒ integration of it gives physical observables


e.g.) baryon current in the local rest frame ($J_{LRF}^0 =: \rho$ gives the baryon density):

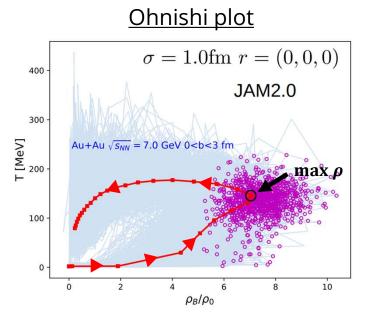

$$J_{\text{LRF}}^{\mu} = \Lambda^{\mu}_{\nu} J_{\text{lab}}^{\nu} = \Lambda^{\mu}_{\nu} \sum_{i: \text{ all hadrons}} \rho(\mathbf{x}_{i}) Q_{i} \frac{p_{i}^{\mu}}{p_{i}^{0}}$$

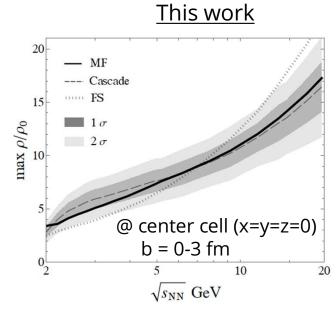
Boost matrix (move to Eckart frame) Gaussian smearing (σ =1fm)

Result (1/3): maximum density @ center cell (x = 0)


✓ Consistency check w/ Ohnishi plot: calculate $\max_t \rho \coloneqq \max_t J_{\mathrm{LRF}}^0$

 \Rightarrow At $\sqrt{s_{NN}}=7$ GeV, $\max \rho \approx 7\rho_0$ and is **fluctuating by ~30%**

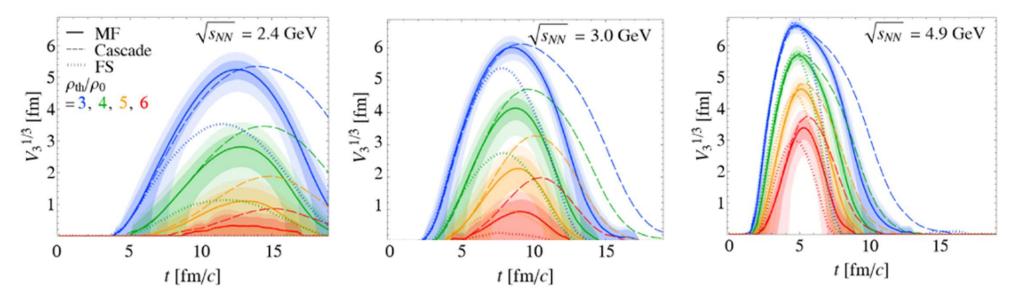

This work


⇒ Consistent w/ Ohnishi plot (the time evo. is also consistent)

Result (1/3): maximum density @ center cell (x = 0)

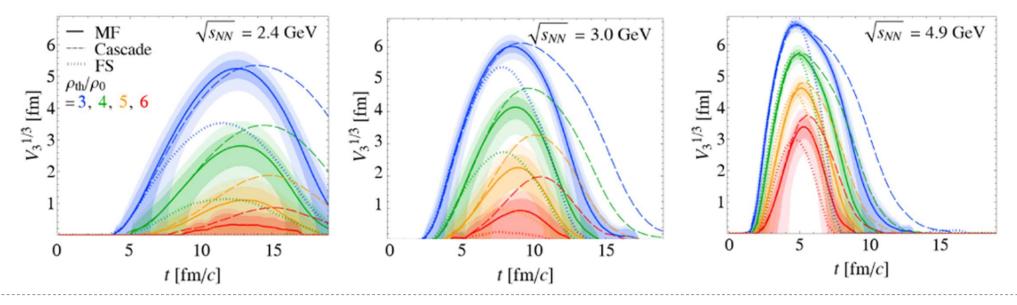
✓ Consistency check w/ Ohnishi plot: calculate $\max
ho \coloneqq \max_t J_{\mathrm{LRF}}^0$

 \Rightarrow At $\sqrt{s_{NN}}=7$ GeV, $\max \rho \approx 7\rho_0$ and is **fluctuating by ~30%**



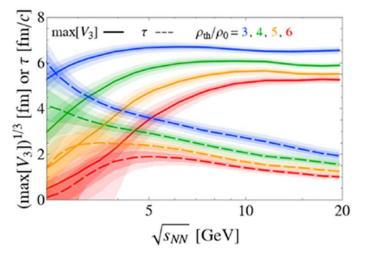
⇒ Consistent w/ Ohnishi plot (the time evo. is also consistent)

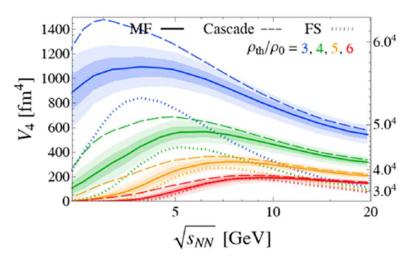
- Basic: Classical physics = Overlapping of Lorentz contracted "uniform" nuclei max density is at the maximally overlap \Rightarrow roughly: $\max \rho = 2 \times \rho_0 \gamma \approx \sqrt{s_{\rm NN}} \ [{\rm GeV}] \times \rho_0$
- Reality: A nucleus is not uniform but is fluctuating happen to overlap more/less \Rightarrow denser/diluter \Rightarrow ~30% fluctuation
 - fluctuation is important for creating a dense region (e.g., top 10% of 7.7 GeV reaches 10 x ρ 0)
 - the dense region should be "local" = cannot extend over the whole overlapping region


Result (2/3): spatial volume V_3

✓ Spatial volume in the local rest frame: $V_3(t) \coloneqq \int_{\rho(t,x)>\rho_{\mathrm{th}}} \mathrm{d}^3x \, \gamma(t,x)$

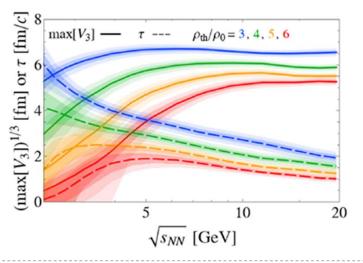
Result (2/3): spatial volume V_3

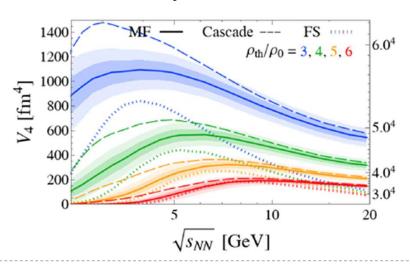

✓ Spatial volume in the local rest frame: $V_3(t) \coloneqq \int_{\rho(t,x)>\rho_{\mathrm{th}}} \mathrm{d}^3x \, \gamma(t,x)$



- Super-dense region originates from nucleons fluct. \Rightarrow volume \sim nucleon size $V_3 = O((1 \text{ fm})^3)$
 - event selection enables us to go to higher densities, but it's not matter (i.e., not macroscopically large)
 - even if such a super-dense local region $V_3 = O((1 \text{ fm})^3)$ were giving a nontrivial signal, it's buried in the other signals by other regions $V_3 = O((5 \text{ fm})^3)$
- "Relatively" dense region $\rho \approx \sqrt{s_{NN}} \, [\text{GeV}] \times \rho_0$ that is created by the naïve overlapping of two uniform nuclei can have sufficiently large volume ~ nucleus size $V_3 = O((6 \, \text{fm})^3)$
 - under the requirement of large $V_3 = O((6 \text{ fm})^3)$, the achievable density is limited to $\rho \approx \sqrt{s_{NN}}$ [GeV] $\times \rho_0$
 - Q: Larger $\sqrt{s_{NN}}$ is better for creating a high dense matter?
 - A: No because the lifetime becomes shorter
 - \Rightarrow Q: what is the best energy $\sqrt{s_{NN}}$ that maximize the volume and lifetime simultaneously, with keeping a high density?

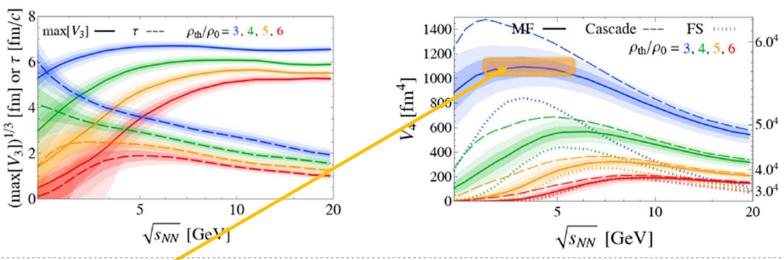
Result (3/3): lifetime and four volume


✓ Four volume and lifetime: $V_4 \coloneqq \int_{
ho(t,x) >
ho_{ ext{th}}} \mathrm{d}t \mathrm{d}^3x$ & $\tau \coloneqq V_4/\max_t V_3$



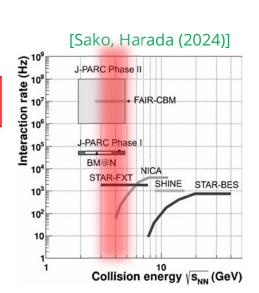
Result (3/3): lifetime and four volume

✓ Four volume and lifetime: $V_4 \coloneqq \int_{\rho(t,x)>\rho_{ ext{th}}} \mathrm{d}t \mathrm{d}^3x$ & $\tau \coloneqq V_4/\max_t V_3$



•
$$\sqrt{s_{NN}} \nearrow \Rightarrow V_3 \nearrow \& \tau \searrow$$

Result (3/3): lifetime and four volume


✓ Four volume and lifetime: $V_4 \coloneqq \int_{
ho(t,x) >
ho_{ ext{th}}} \mathrm{d}t \mathrm{d}^3x$ & $\tau \coloneqq V_4 / \max_t V_3$

- $\sqrt{s_{NN}} \nearrow \Rightarrow V_3 \nearrow \& \tau \searrow$
- V_4 has a plateau where lifetime and volume are simultaneously "maximized"
 - ⇒ interpreted as "the best energy range for creating high dense matter i.t.o. spacetime vol."
 - for $ho > 3
 ho_0$ it's $\sqrt{s_{NN}} = 3 \sim 5~{
 m GeV}$
 - the range can also be identified for even higher densities like $\rho > 5\rho_0$, for which however V_4 is no longer large (e.g., $V_4 \sim ((4 \text{ fm})^4) \text{ for } \rho > 5\rho_0$)
 - \therefore The best energy range is $\sqrt{s_{NN}}=3\sim 5$ GeV where you can explorer $ho>3
 ho_0$

Comment 1: should be contrasted w/ the existing result [Randrup, Cleymans (2006)] $\sqrt{s_{NN}}=6\sim 10$ GeV and $\rho=(6\sim 10)\times \rho_0$ [Ohnishi plot (~2010)]

Comment 2: the future experiments like FAIR-CBM & J-PARC-HI will exactly cover this regime with great statistics!

Contents

- 1. Introduction: High-density QCD and intermediate-energy HIC
- 2. Best energy range for high density physics
- 3. Strong EM field
- 4. Summary

Motivation (1/2): Strong-field physics

- **✓** Matter under extreme conditions: temperature, density, EM field, ...
 - Not only at the QCD scale but also even at the QED scale, many nontrivial non-perturbative phenomena expected (=: strong-field physics)

Novel QED processes $(eE, eB \gtrsim m_e^2)$

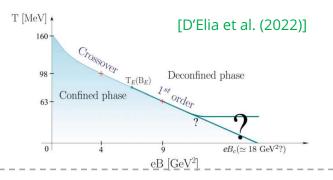
Review: [Fedotov, Ilderton, Karbstein, King, Seipt, <u>HT, Torgrimsson (20</u>22)] [Hattori, Itakura, Ozaki (2023)]

e.g.) Schwinger effect

Photon splitting

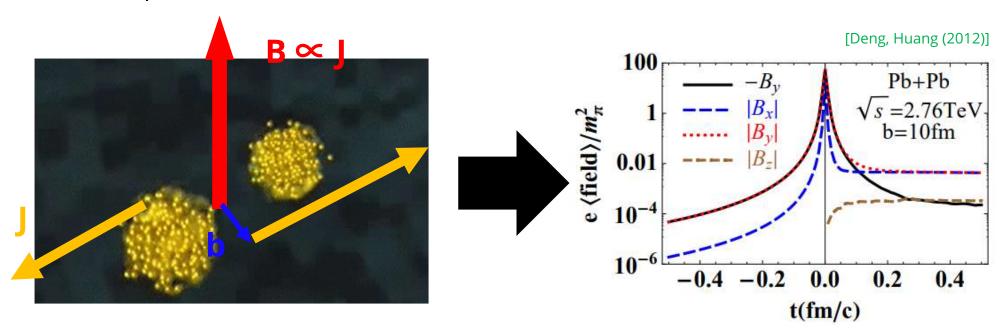
Vacuum birefringence



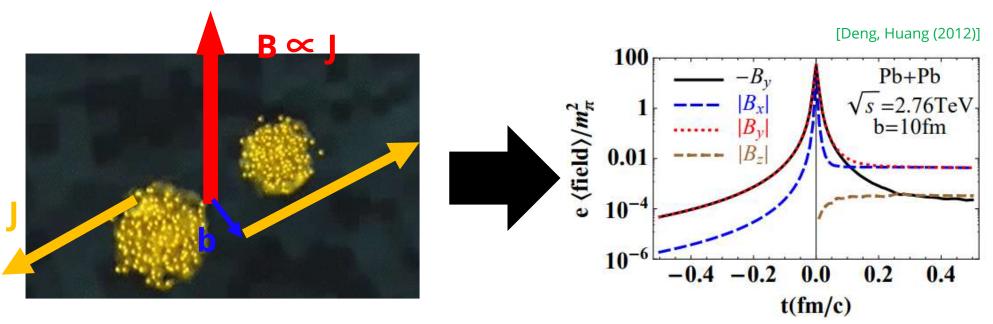


Impacts on QCD/hadron physics ($eE, eB \gtrsim \Lambda_{\rm QCD}^2$)

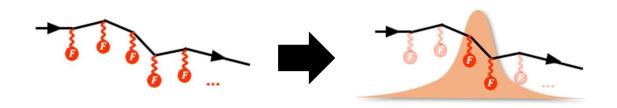
• Hadron properties (e.g., mass, charge density, decay mode, ...)


• QCD phase diagram (e.g., new phase, magnetic catalysis, ...)

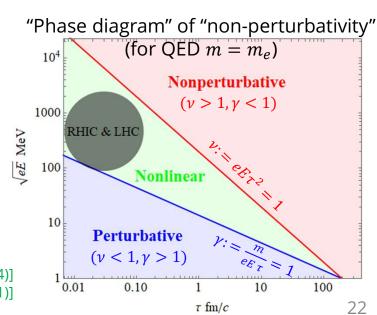
- However, NO experimental verification
 - \because no exp. to realize strong field \Rightarrow New idea/approach strongly needed!


Motivation (2/2): Use of HIC

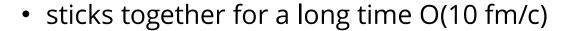
• Such a possibility has been discussed at high energies $\sqrt{s_{NN}}=0(100-1000~{\rm GeV})$ over the past decade

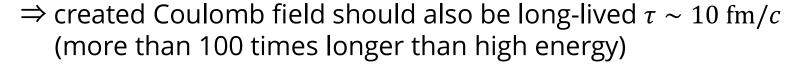


Motivation (2/2): Use of HIC

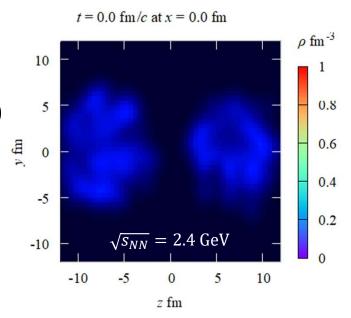

• Such a possibility has been discussed at high energies $\sqrt{s_{NN}} = O(100 - 1000 \text{ GeV})$ over the past decade

 But, extremely short-lived, so not interesting for non-perturbative strong-field physics

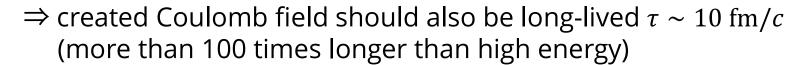

[HT, Fujiii, Itakura (2014)] [HT, Fujimori, Misumi, Nitta, Sakai (2021)]



Idea: Intermediate energy should be useful


✓ Baryon stopping at intermediate energies

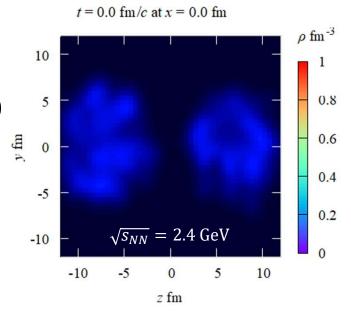
- high density is realized = large "atomic" number Z~200
 - \Rightarrow strong Coulomb field $eE \sim \frac{Z\alpha}{r^2} \sim \Lambda_{\rm QCD}^2 \sim (100 \text{ MeV})^2$
 - ⇒ much stronger than the QED scale and is still comparable to QCD

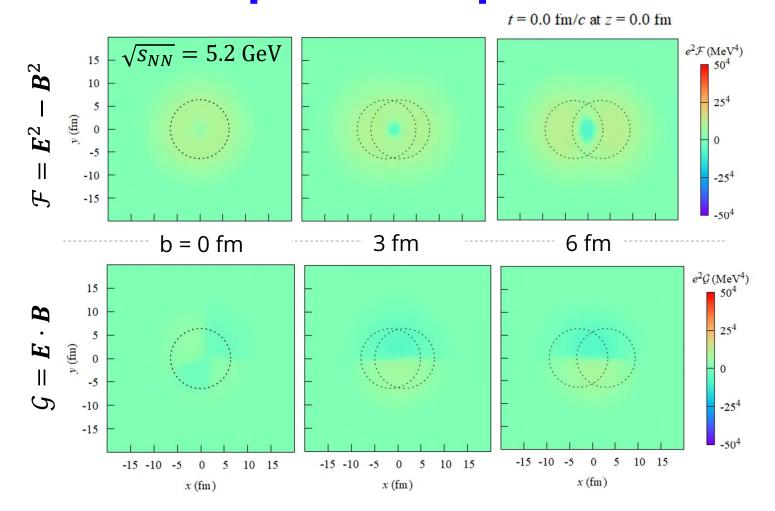


<u>Idea: Intermediate energy should be useful</u>

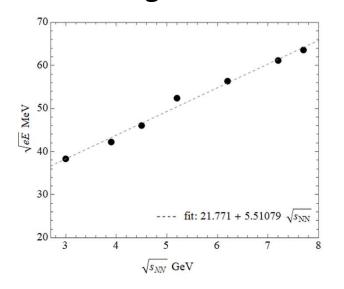
✓ Baryon stopping at intermediate energies

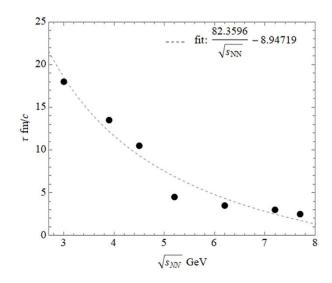
- high density is realized = large "atomic" number Z~200
 - \Rightarrow strong Coulomb field $eE \sim \frac{Z\alpha}{r^2} \sim \Lambda_{\rm QCD}^2 \sim (100 \text{ MeV})^2$
 - ⇒ much stronger than the QED scale and is still comparable to QCD



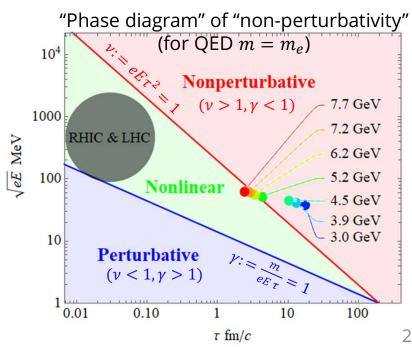


⇒ Purpose: Let's check if this is correct/wrong by using JAM


Result (1/2): Spacetime profile of EM field



- B field appears w/ going to more peripheral but E field is always larger in space
 ⇒ E field would be more important than B field in intermediate energies
- "topological" EM field configuration such that $\mathcal{G} = \mathbf{E} \cdot \mathbf{B} \neq 0$ \Rightarrow can be a source of chiral physics $\partial_{\mu} J_{5}^{\mu} \propto E \cdot B$

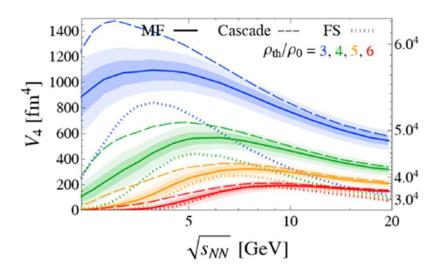

Result (2/2): More quantitative analysis

✓ Peak E-field strength and lifetime (FWHM) (at central coll. b=0)

- "strong" O(50 MeV) and long-lived O(10 fm/c) realized
- can cover non-pert. regime
 - ∴ Intermediate-energy HIC must be useful as a new tool to study strong-field physics
- non-negligible to QCD/hadron scale
 - ⇒ should affect, e.g., EM probe

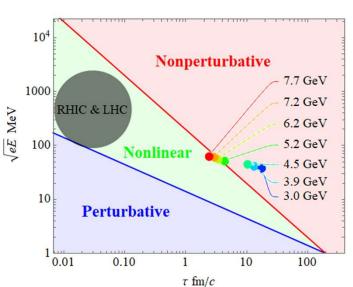
Contents

- 1. Introduction: High-density QCD and intermediate-energy HIC
- 2. Best energy range for high density physics
- 3. Strong EM field
- 4. Summary


Summary

✓ I discussed physical conditions realized in intermediate-energy heavy-ion collisions by using a hadron transport model JAM

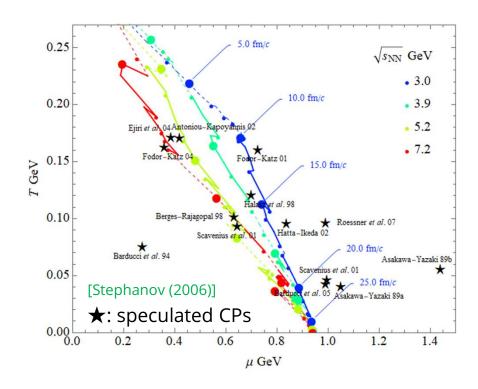
✓ Two take-home messages:


(1) What is the BEST energy range to study high baryon-density physics ? $\Rightarrow \sqrt{s_{NN}} = 3 \sim 5 \text{ GeV}$

[HT, Jinno, Kitazawa, Nara, 2409.07685]

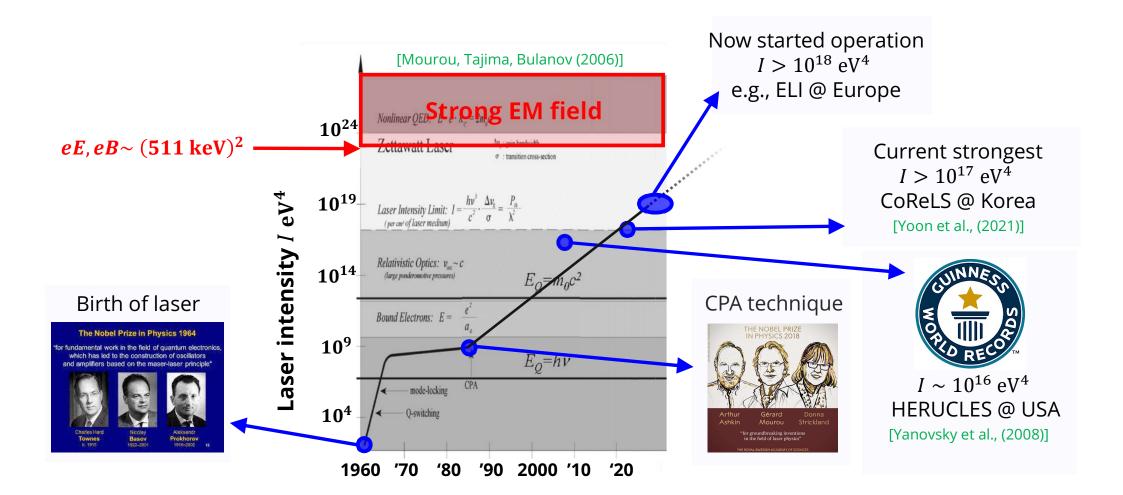
(2) Such an intermediate-energy regime is also EXTREMELY interesting for studying physics of strong EM field

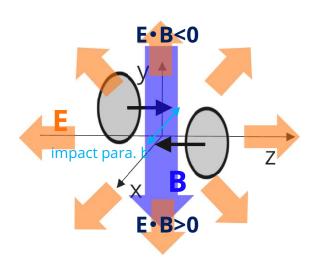
[HT, Nishimura, Ohnishi, 2402.17136] [HT, 2501.18171]


Backup

✓ What are the corresponding temperature T and chemical potential µ?

Naïve estimate from the classical ideal gas EoS, e.g., P = nT:


(← no visible changes from those obtained by the numerical fit of the spectrum with Fermi dist)


 \Rightarrow Good news for critical-point search:

the trajectories pass the speculated critical points in the best energy range

Development of intense laser

How E•B≠0 emerges

